SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christensen Torben) ;lar1:(slu)"

Sökning: WFRF:(Christensen Torben) > Sveriges Lantbruksuniversitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Callaghan, Terry, et al. (författare)
  • Multi-Decadal Changes in Tundra Environments and Ecosystems : Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF)
  • 2011
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 40:6, s. 705-716
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the responses of tundra systemsto global change has global implications. Most tundraregions lack sustained environmental monitoring and oneof the only ways to document multi-decadal change is toresample historic research sites. The International PolarYear (IPY) provided a unique opportunity for such researchthrough the Back to the Future (BTF) project (IPY project#512). This article synthesizes the results from 13 paperswithin this Ambio Special Issue. Abiotic changes includeglacial recession in the Altai Mountains, Russia; increasedsnow depth and hardness, permafrost warming, andincreased growing season length in sub-arctic Sweden;drying of ponds in Greenland; increased nutrient availabilityin Alaskan tundra ponds, and warming at mostlocations studied. Biotic changes ranged from relativelyminor plant community change at two sites in Greenland tomoderate change in the Yukon, and to dramatic increasesin shrub and tree density on Herschel Island, and in subarcticSweden. The population of geese tripled at one sitein northeast Greenland where biomass in non-grazed plotsdoubled. A model parameterized using results from a BTFstudy forecasts substantial declines in all snowbeds andincreases in shrub tundra on Niwot Ridge, Colorado overthe next century. In general, results support and provideimproved capacities for validating experimental manipulation,remote sensing, and modeling studies.
  •  
3.
  • Callaghan, Terry V., et al. (författare)
  • Ecosystem change and stability over multiple decades in the Swedish subarctic : complex processes and multiple drivers
  • 2013
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 368:1624
  • Tidskriftsartikel (refereegranskat)abstract
    • The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.
  •  
4.
  • Hammen, V. C., et al. (författare)
  • Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity
  • 2010
  • Ingår i: Environmental Monitoring & Assessment. - : Springer Science and Business Media LLC. - 1573-2959 .- 0167-6369. ; 164:1-4, s. 337-348
  • Tidskriftsartikel (refereegranskat)abstract
    • The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals.
  •  
5.
  • Lund, Magnus, et al. (författare)
  • Variability in exchange of CO2 across 12 northern peatland and tundra sites
  • 2010
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 16:9, s. 2436-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • Many wetland ecosystems such as peatlands and wet tundra hold large amounts of organic carbon (C) in their soils, and are thus important in the terrestrial C cycle. We have synthesized data on the carbon dioxide (CO2) exchange obtained from eddy covariance measurements from 12 wetland sites, covering 1-7 years at each site, across Europe and North America, ranging from ombrotrophic and minerotrophic peatlands to wet tundra ecosystems, spanning temperate to arctic climate zones. The average summertime net ecosystem exchange of CO2 (NEE) was highly variable between sites. However, all sites with complete annual datasets, seven in total, acted as annual net sinks for atmospheric CO2. To evaluate the influence of gross primary production (GPP) and ecosystem respiration (R-eco) on NEE, we first removed the artificial correlation emanating from the method of partitioning NEE into GPP and R-eco. After this correction neither R-eco (P = 0.162) nor GPP (P = 0.110) correlated significantly with NEE on an annual basis. Spatial variation in annual and summertime R-eco was associated with growing season period, air temperature, growing degree days, normalized difference vegetation index and vapour pressure deficit. GPP showed weaker correlations with environmental variables as compared with R-eco, the exception being leaf area index (LAI), which correlated with both GPP and NEE, but not with R-eco. Length of growing season period was found to be the most important variable describing the spatial variation in summertime GPP and R-eco; global warming will thus cause these components to increase. Annual GPP and NEE correlated significantly with LAI and pH, thus, in order to predict wetland C exchange, differences in ecosystem structure such as leaf area and biomass as well as nutritional status must be taken into account.
  •  
6.
  • Pascual, Didac, et al. (författare)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
7.
  • Schmidt, Niels Martin, et al. (författare)
  • A high arctic experience of uniting research and monitoring
  • 2017
  • Ingår i: Earth's Future. - 2328-4277. ; 5:7, s. 650-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"-particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system-to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.
  •  
8.
  • Schubert, Per, et al. (författare)
  • Modeling GPP in the Nordic forest landscape with MODIS time series data-Comparison with the MODIS GPP product
  • 2012
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 126, s. 136-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite sensor-derived data are suitable for regional estimations of several important biophysical variables. Data with a finer spatial resolution should improve regional estimations of GPP (gross primary productivity), since they better capture the variation in a heterogeneous landscape. The main objective of this study was to investigate if MODIS 500 m reflectance data can be used to drive empirical models for regional estimations of GPP in Nordic forests. The performance of the proposed models was compared with the MODIS 1 km GPP product. Linear regression analyses were made on 8-day averages of eddy covariance GPP from three deciduous and ten coniferous sites in relation to MODIS 8-day composite data and 8-day averages of modeled incoming PPFD (photosynthetic photon flux density). Time series of EVI2 (two-band enhanced vegetation index) were calculated from MODIS 500 m reflectance data and smoothed by a curve fitting procedure. For most sites, GPP was fairly strongly to strongly related to the product of EVI2 and PPFD (Deciduous: R-2=0.45-0.86, Coniferous: R-2=0.49-0.90). Similar strengths were found between GPP and the product of EVI2 and MODIS 1 km daytime LST (land surface temperature) (R-2=0.55-0.81, 0.57-0.77) and between GPP and EVI2, PPFD and daytime LST in multiple linear regressions (R-2=0.73-0.89,0.65-0.93). One year of data was collected from all coniferous sites to derive a general empirical model for GPP versus (1) the product of EVI2 and PPFD (R-2=0.70), (2) the product of EVI2 and daytime LST (R-2=0.62) and (3) EVI2, PPFD and daytime LST (R-2=0.72). These three models were then validated at six sites for the remaining years by linearly relating eddy covariance GPP to modeled GPP, which resulted in fairly strong to strong relationships for most sites (R-2=0.49-0.91, RMSE=0.63-1.22 gC m(-2) day(-1), R-2=0.53-0.73, RMSE=0.90-1.43 gC m(-2) day(-1) R-2=0.56-0.87, RMSE=0.79-1.11 gC m(-2) day(-1)). In comparison, similar validation strengths were found for the latest collection 5.1 of the MODIS 1 km GPP product (R-2=0.59-0.88, RMSE=0.80-1.16 gC m(-2) day(-1)). The main conclusion is that the suggested empirical models driven by MODIS 500 m reflectance data can be used for regional estimations of Nordic forest GPP, while preserving a finer resolution than the MODIS 1 km GPP product. (C) 2012 Elsevier Inc. All rights reserved.
  •  
9.
  • Virkkala, Anna Maria, et al. (författare)
  • Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:17, s. 4040-4059
  • Tidskriftsartikel (refereegranskat)abstract
    • The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Christensen, Torben ... (3)
Schuur, Edward A. G. (2)
Natali, Susan M. (2)
Dorrepaal, Ellen (2)
Olsson, Håkan (1)
Aalto, Juha (1)
visa fler...
Luoto, Miska (1)
Wookey, Philip (1)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
visa färre...
Lärosäte
Göteborgs universitet (3)
Umeå universitet (3)
Uppsala universitet (3)
Stockholms universitet (3)
visa fler...
Högskolan Kristianstad (1)
Luleå tekniska universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy