SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cirtwill Alyssa) ;conttype:(refereed)"

Sökning: WFRF:(Cirtwill Alyssa) > Refereegranskat

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albouy, Camille, et al. (författare)
  • The marine fish food web is globally connected
  • 2019
  • Ingår i: Nature Ecology & Evolution. - : NATURE PUBLISHING GROUP. - 2397-334X. ; 3:8, s. 1153-
  • Tidskriftsartikel (refereegranskat)abstract
    • The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.
  •  
2.
  • Baiser, Benjamin, et al. (författare)
  • Ecogeographical rules and the macroecology of food webs
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley-Blackwell Publishing Inc.. - 1466-822X .- 1466-8238. ; 28:9, s. 1204-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • AimHow do factors such as space, time, climate and other ecological drivers influence food web structure and dynamics? Collections of well‐studied food webs and replicate food webs from the same system that span biogeographical and ecological gradients now enable detailed, quantitative investigation of such questions and help integrate food web ecology and macroecology. Here, we integrate macroecology and food web ecology by focusing on how ecogeographical rules [the latitudinal diversity gradient (LDG), Bergmann's rule, the island rule and Rapoport's rule] are associated with the architecture of food webs.LocationGlobal.Time periodCurrent.Major taxa studiedAll taxa.MethodsWe discuss the implications of each ecogeographical rule for food webs, present predictions for how food web structure will vary with each rule, assess empirical support where available, and discuss how food webs may influence ecogeographical rules. Finally, we recommend systems and approaches for further advancing this research agenda.ResultsWe derived testable predictions for some ecogeographical rules (e.g. LDG, Rapoport's rule), while for others (e.g., Bergmann's and island rules) it is less clear how we would expect food webs to change over macroecological scales. Based on the LDG, we found weak support for both positive and negative relationships between food chain length and latitude and for increased generality and linkage density at higher latitudes. Based on Rapoport's rule, we found support for the prediction that species turnover in food webs is inversely related to latitude.Main conclusionsThe macroecology of food webs goes beyond traditional approaches to biodiversity at macroecological scales by focusing on trophic interactions among species. The collection of food web data for different types of ecosystems across biogeographical gradients is key to advance this research agenda. Further, considering food web interactions as a selection pressure that drives or disrupts ecogeographical rules has the potential to address both mechanisms of and deviations from these macroecological relationships. For these reasons, further integration of macroecology and food webs will help ecologists better understand the assembly, maintenance and change of ecosystems across space and time.
  •  
3.
  • Cirtwill, Alyssa, et al. (författare)
  • A quantitative framework for investigating the reliability of empirical network construction
  • 2019
  • Ingår i: Methods in Ecology and Evolution. - : WILEY. - 2041-210X. ; 10:6, s. 902-911
  • Tidskriftsartikel (refereegranskat)abstract
    • Descriptions of ecological networks typically assume that the same interspecific interactions occur each time a community is observed. This contrasts with the known stochasticity of ecological communities: community composition, species abundances and link structure all vary in space and time. Moreover, finite sampling generates variation in the set of interactions actually observed. For interactions that have not been observed, most datasets will not contain enough information for the ecologist to be confident that unobserved interactions truly did not occur. Here, we develop the conceptual and analytical tools needed to capture uncertainty in the estimation of pairwise interactions. To define the problem, we identify the different contributions to the uncertainty of an interaction. We then outline a framework to quantify the uncertainty around each interaction by combining data on observed co-occurrences with prior knowledge. We illustrate this framework using perhaps the most extensively sampled network to date. We found significant uncertainty in estimates for the probability of most pairwise interactions. This uncertainty can, however, be constrained with informative priors. This uncertainty scaled up to summary measures of network structure such as connectance and nestedness. Even with informative priors, we are likely to miss many interactions that may occur rarely or under different local conditions. Overall, we demonstrate the importance of acknowledging the uncertainty inherent in network studies, and the utility of treating interactions as probabilities in pinpointing areas where more study is needed. Most importantly, we stress that networks are best thought of as systems constructed from random variables, the stochastic nature of which must be acknowledged for an accurate representation. Doing so will fundamentally change network analyses and yield greater realism.
  •  
4.
  • Cirtwill, Alyssa, et al. (författare)
  • A review of species role concepts in food webs
  • 2018
  • Ingår i: Food Webs. - : Elsevier BV. - 2352-2496. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Many different concepts have been used to describe species' roles in food webs (i.e., the ways in which species participate in their communities as consumers and resources). As each concept focuses on a different aspect of food-web structure, it can be difficult to relate these concepts to each other and to other aspects of ecology. Here we use the Eltonian niche as an overarching framework, within which we summarize several commonly-used role concepts (degree, trophic level, motif roles, and centrality). We focus mainly on the topological versions of these concepts but, where dynamical versions of a role concept exist, we acknowledge these as well. Our aim is to highlight areas of overlap and ambiguity between different role concepts and to describe how these roles can be used to group species according to different strategies (i.e., equivalence and functional roles). The existence of “gray areas” between role concepts make it essential for authors to carefully consider both which role concept(s) are most appropriate for the analyses they wish to conduct and what aspect of species' niches (if any) they wish to address. The ecological meaning of differences between species' roles can change dramatically depending on which role concept(s) are used.
  •  
5.
  • Cirtwill, Alyssa, et al. (författare)
  • Between-year changes in community composition shape species' roles in an Arctic plant-pollinator network
  • 2018
  • Ingår i: Oikos. - : WILEY. - 0030-1299 .- 1600-0706. ; 127:8, s. 1163-1176
  • Tidskriftsartikel (refereegranskat)abstract
    • Inter-annual turnover in community composition can affect the richness and functioning of ecological communities. If incoming and outgoing species do not interact with the same partners, ecological functions such as pollination may be disrupted. Here, we explore the extent to which turnover affects species' roles - as defined based on their participation in different motifs positions - in a series of temporally replicated plant-pollinator networks from high-Arctic Zackenberg, Greenland. We observed substantial turnover in the plant and pollinator assemblages, combined with significant variation in species' roles between networks. Variation in the roles of plants and pollinators tended to increase with the amount of community turnover, although a negative interaction between turnover in the plant and pollinator assemblages complicated this trend for the roles of pollinators. This suggests that increasing turnover in the future will result in changes to the roles of plants and likely those of pollinators. These changing roles may in turn affect the functioning or stability of this pollination network.
  •  
6.
  • Cirtwill, Alyssa, et al. (författare)
  • Feeding environment and other traits shape species roles in marine food webs
  • 2018
  • Ingår i: Ecology Letters. - : WILEY. - 1461-023X .- 1461-0248. ; 21:6, s. 875-884
  • Tidskriftsartikel (refereegranskat)abstract
    • Food webs and meso-scale motifs allow us to understand the structure of ecological communities and define species roles within them. This species-level perspective on networks permits tests for relationships between species traits and their patterns of direct and indirect interactions. Such relationships could allow us to predict food-web structure based on more easily obtained trait information. Here, we calculated the roles of species (as vectors of motif position frequencies) in six well-resolved marine food webs and identified the motif positions associated with the greatest variation in species roles. We then tested whether the frequencies of these positions varied with species traits. Despite the coarse-grained traits we used, our approach identified several strong associations between traits and motifs. Feeding environment was a key trait in our models and may shape species roles by affecting encounter probabilities. Incorporating environment into future food-web models may improve predictions of an unknown network structure.
  •  
7.
  • Cirtwill, Alyssa, et al. (författare)
  • Host taxonomy constrains the properties of trophic transmission routes for parasites in lake food webs
  • 2017
  • Ingår i: Ecology. - : WILEY. - 0012-9658 .- 1939-9170. ; 98:9, s. 2401-2412
  • Tidskriftsartikel (refereegranskat)abstract
    • Some parasites move from one host to another via trophic transmission, the consumption of the parasite (inside its current host) by its future host. Feeding links among free-living species can thus be understood as potential transmission routes for parasites. As these links have different dynamic and structural properties, they may also vary in their effectiveness as trophic transmission routes. That is, some links may be better than others in allowing parasites to complete their complex life cycles. However, not all links are accessible to parasites as most are restricted to a small number of host taxa. This restriction means that differences between links involving host and non-host taxa must be considered when assessing whether transmission routes for parasites have different food web properties than other links. Here we use four New Zealand lake food webs to test whether link properties (contribution of a link to the predators diet, prey abundance, prey biomass, amount of biomass transferred, centrality, and asymmetry) affect trophic transmission of parasites. Critically, we do this using both models that neglect the taxonomy of free-living species and models that explicitly include information about which free-living species are members of suitable host taxa. Although the best-fit model excluding taxonomic information suggested that transmission routes have different properties than other feeding links, when including taxonomy, the best-fit model included only an intercept. This means that the taxonomy of free-living species is a key determinant of parasite transmission routes and that food-web properties of transmission routes are constrained by the properties of host taxa. In particular, many intermediate hosts (prey) attain high biomasses and are involved in highly central links while links connecting intermediate to definitive (predator) hosts tend to be dynamically weak.
  •  
8.
  • Cirtwill, Alyssa R., et al. (författare)
  • Building food networks from molecular data : Bayesian or fixed-number thresholds for including links
  • 2021
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 50, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA metabarcoding of faeces or gut contents has greatly increased our ability to construct networks of predators and prey (food webs) by reducing the need to observe predation events directly. The possibility of both false positives and false negatives in DNA sequences, however, means that constructing food networks using DNA requires researchers to make many choices as to which DNA sequences indicate true prey for a particular predator. To date, DNA-based food networks are usually constructed by including any DNA sequence with more than a threshold number of reads. The logic used to select this threshold is often not explained, leading to somewhat arbitrary-seeming networks. As an alternative strategy, we demonstrate how to construct food networks using a simple Bayesian model to suggest which sequences correspond to true prey. The networks obtained using a well-chosen fixed cutoff and our Bayesian approach are very similar, especially when links are resolved to prey families rather than species. We therefore recommend that researchers reconstruct diet data using a Bayesian approach with well-specified assumptions rather than continuing with arbitrary fixed cutoffs. Explicitly stating assumptions within a Bayesian framework will lead to better-informed comparisons between networks constructed by different groups and facilitate drawing together individual case studies into more coherent ecological theory. Note that our approach can easily be extended to other types of ecological networks constructed by DNA metabarcoding of pollen loads, identification of parasite DNA in faeces, etc.
  •  
9.
  • Cirtwill, Alyssa R., et al. (författare)
  • Flower-visitor and pollen-load data provide complementary insight into species and individual network roles
  • 2024
  • Ingår i: Oikos. - : John Wiley & Sons. - 0030-1299 .- 1600-0706.
  • Tidskriftsartikel (refereegranskat)abstract
    • Most animal pollination results from plant–insect interactions, but how we perceive these interactions may differ with the sampling method adopted. The two most common methods are observations of visits by pollinators to plants and observations of pollen loads carried by insects. Each method could favour the detection of different species and interactions, and pollen load observations typically reveal more interactions per individual insect than visit observations. Moreover, while observations concern plant and insect individuals, networks are frequently analysed at the level of species. Although networks constructed using visitation and pollen-load data have occasionally been compared in relatively specialised, bee-dominated systems, it is not known how sampling methodology will affect our perception of how species (and individuals within species) interact in a more generalist system. Here we use a Diptera-dominated high-Arctic plant–insect community to explore how sampling approach shapes several measures of species' interactions (focusing on specialisation), and what we can learn about how the interactions of individuals relate to those of species. We found that species degrees, interaction strengths, and species motif roles were significantly correlated across the two method-specific versions of the network. However, absolute differences in degrees and motif roles were greater than could be explained by the greater number of interactions per individual provided by the pollen-load data. Thus, despite the correlations between species roles in networks built using visitation and pollen-load data, we infer that these two perspectives yield fundamentally different summaries of the ways species fit into their communities. Further, individuals' roles generally predicted the species' overall role, but high variability among individuals means that species' roles cannot be used to predict those of particular individuals. These findings emphasize the importance of adopting a dual perspective on bipartite networks, as based on the different information inherent in insect visits and pollen loads.
  •  
10.
  • Cirtwill, Alyssa R., et al. (författare)
  • Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families
  • 2020
  • Ingår i: New Phytologist. - : WILEY. - 0028-646X .- 1469-8137. ; 226:3, s. 909-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Related plants are often hypothesized to interact with similar sets of pollinators and herbivores, but this idea has only mixed empirical support. This may be because plant families vary in their tendency to share interaction partners. We quantify overlap of interaction partners for all pairs of plants in 59 pollination and 11 herbivory networks based on the numbers of shared and unshared interaction partners (thereby capturing both proportional and absolute overlap). We test for relationships between phylogenetic distance and partner overlap within each network; whether these relationships varied with the composition of the plant community; and whether well-represented plant families showed different relationships. Across all networks, more closely related plants tended to have greater overlap. The strength of this relationship within a network was unrelated to the composition of the networks plant component, but, when considered separately, different plant families showed different relationships between phylogenetic distance and overlap of interaction partners. The variety of relationships between phylogenetic distance and partner overlap in different plant families probably reflects a comparable variety of ecological and evolutionary processes. Considering factors affecting particular species-rich groups within a community could be the key to understanding the distribution of interactions at the network level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy