SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cirtwill Alyssa R.) ;pers:(Cirtwill Alyssa)"

Sökning: WFRF:(Cirtwill Alyssa R.) > Cirtwill Alyssa

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cirtwill, Alyssa R., et al. (författare)
  • Building food networks from molecular data : Bayesian or fixed-number thresholds for including links
  • 2021
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 50, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA metabarcoding of faeces or gut contents has greatly increased our ability to construct networks of predators and prey (food webs) by reducing the need to observe predation events directly. The possibility of both false positives and false negatives in DNA sequences, however, means that constructing food networks using DNA requires researchers to make many choices as to which DNA sequences indicate true prey for a particular predator. To date, DNA-based food networks are usually constructed by including any DNA sequence with more than a threshold number of reads. The logic used to select this threshold is often not explained, leading to somewhat arbitrary-seeming networks. As an alternative strategy, we demonstrate how to construct food networks using a simple Bayesian model to suggest which sequences correspond to true prey. The networks obtained using a well-chosen fixed cutoff and our Bayesian approach are very similar, especially when links are resolved to prey families rather than species. We therefore recommend that researchers reconstruct diet data using a Bayesian approach with well-specified assumptions rather than continuing with arbitrary fixed cutoffs. Explicitly stating assumptions within a Bayesian framework will lead to better-informed comparisons between networks constructed by different groups and facilitate drawing together individual case studies into more coherent ecological theory. Note that our approach can easily be extended to other types of ecological networks constructed by DNA metabarcoding of pollen loads, identification of parasite DNA in faeces, etc.
  •  
2.
  • Cirtwill, Alyssa R., et al. (författare)
  • Flower-visitor and pollen-load data provide complementary insight into species and individual network roles
  • 2024
  • Ingår i: Oikos. - : John Wiley & Sons. - 0030-1299 .- 1600-0706.
  • Tidskriftsartikel (refereegranskat)abstract
    • Most animal pollination results from plant–insect interactions, but how we perceive these interactions may differ with the sampling method adopted. The two most common methods are observations of visits by pollinators to plants and observations of pollen loads carried by insects. Each method could favour the detection of different species and interactions, and pollen load observations typically reveal more interactions per individual insect than visit observations. Moreover, while observations concern plant and insect individuals, networks are frequently analysed at the level of species. Although networks constructed using visitation and pollen-load data have occasionally been compared in relatively specialised, bee-dominated systems, it is not known how sampling methodology will affect our perception of how species (and individuals within species) interact in a more generalist system. Here we use a Diptera-dominated high-Arctic plant–insect community to explore how sampling approach shapes several measures of species' interactions (focusing on specialisation), and what we can learn about how the interactions of individuals relate to those of species. We found that species degrees, interaction strengths, and species motif roles were significantly correlated across the two method-specific versions of the network. However, absolute differences in degrees and motif roles were greater than could be explained by the greater number of interactions per individual provided by the pollen-load data. Thus, despite the correlations between species roles in networks built using visitation and pollen-load data, we infer that these two perspectives yield fundamentally different summaries of the ways species fit into their communities. Further, individuals' roles generally predicted the species' overall role, but high variability among individuals means that species' roles cannot be used to predict those of particular individuals. These findings emphasize the importance of adopting a dual perspective on bipartite networks, as based on the different information inherent in insect visits and pollen loads.
  •  
3.
  • Cirtwill, Alyssa R., et al. (författare)
  • Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families
  • 2020
  • Ingår i: New Phytologist. - : WILEY. - 0028-646X .- 1469-8137. ; 226:3, s. 909-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Related plants are often hypothesized to interact with similar sets of pollinators and herbivores, but this idea has only mixed empirical support. This may be because plant families vary in their tendency to share interaction partners. We quantify overlap of interaction partners for all pairs of plants in 59 pollination and 11 herbivory networks based on the numbers of shared and unshared interaction partners (thereby capturing both proportional and absolute overlap). We test for relationships between phylogenetic distance and partner overlap within each network; whether these relationships varied with the composition of the plant community; and whether well-represented plant families showed different relationships. Across all networks, more closely related plants tended to have greater overlap. The strength of this relationship within a network was unrelated to the composition of the networks plant component, but, when considered separately, different plant families showed different relationships between phylogenetic distance and overlap of interaction partners. The variety of relationships between phylogenetic distance and partner overlap in different plant families probably reflects a comparable variety of ecological and evolutionary processes. Considering factors affecting particular species-rich groups within a community could be the key to understanding the distribution of interactions at the network level.
  •  
4.
  • Cirtwill, Alyssa R., et al. (författare)
  • Species motif participation provides unique information about species risk of extinction
  • 2024
  • Ingår i: Journal of Animal Ecology. - : WILEY. - 0021-8790 .- 1365-2656.
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of species in food webs can set in motion a cascade of additional (secondary) extinctions. A species' position in a food web (e.g. its trophic level or number of interactions) is known to affect its ability to persist following disturbance. These simple measures, however, offer only a coarse description of how species fit into their community. One would therefore expect that more detailed structural measures such as participation in three-species motifs (meso-scale structures which provide information on a species' direct and indirect interactions) will also be related to probability of persistence. Disturbances affecting the basal resources have particularly strong effects on the rest of the food web. However, how disturbances branch out and affect consumer persistence depends on the structural pattern of species interactions in several steps. The magnitude, for example, the proportion of basal resources lost, will likely also affect the outcome. Here, we analyse whether a consumer's risk of secondary extinction after the removal of basal resources depends on the consumer's motif participation and how this relationship varies with the severity of disturbance. We show that consumer species which participate more frequently in the direct competition motif and less frequently in the omnivory motif generally have higher probability of persistence following disturbance to basal resources. However, both the strength of the disturbance and the overall network structure (i.e. connectance) affect the strength and direction of relationships between motif participation and persistence. Motif participation therefore captures important trends in species persistence and provides a rich description of species' structural roles in their communities, but must be considered in the context of network structure as a whole and of the specific disturbance applied. Like degree and trophic level, a species' participation in meso-scale motifs can affect its persistence after disturbance. We show that these relationships also depend strongly on the strength of disturbance.image
  •  
5.
  • Hambäck, Peter A., et al. (författare)
  • More intraguild prey than pest species in arachnid diets may compromise biological control in apple orchards
  • 2021
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 57, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the full diet of natural enemies is necessary for evaluating their role as biocontrol agents, because many enemy species do not only feed on pests but also on other natural enemies. Such intraguild predation can compromise pest control if the consumed enemies are actually better for pest control than their predators. In this study, we used gut metabarcoding to quantify diets of all common arachnid species in Swedish and Spanish apple orchards. For this purpose, we designed new primers that reduce amplification of arachnid predators while retaining high amplification of all prey groups. Results suggest that most arachnids consume a large range of putative pest species on apple but also a high proportion of other natural enemies, where the latter constitute almost a third of all prey sequences. Intraguild predation also varied between regions, with a larger content of heteropteran bugs in arachnid guts from Spanish orchards, but not between orchard types. There was also a tendency for cursorial spiders to have more intraguild prey in the gut than web spiders. Two groups that may be overlooked as important biocontrol agents in apple orchards seem to be theridiid web spiders and opilionids, where the latter had several small-bodied pest species in the gut. These results thus provide important guidance for what arachnid groups should be targets of management actions, even though additional information is needed to quantify all direct and indirect interactions occurring in the complex arthropod food webs in fruit orchards.
  •  
6.
  • Kortsch, Susanne, et al. (författare)
  • Landscape composition and pollinator traits interact to influence pollination success in an individual-based model
  • 2023
  • Ingår i: Functional Ecology. - 0269-8463. ; 37:7, s. 2056-2071
  • Tidskriftsartikel (refereegranskat)abstract
    • The arrangement of plant species within a landscape influences pollination via changes in pollinator movement trajectories and plant–pollinator encounter rates. Yet the combined effects of landscape composition and pollinator traits (especially specialisation) on pollination success remain hard to quantify empirically. We used an individual-based model to explore how landscape and pollinator specialisation (degree) interact to influence pollination. We modelled variation in the landscape by generating gradients of plant species intermixing—from no mixing to complete intermixing. Furthermore, we varied the level of pollinator specialisation by simulating plant–pollinator (six to eight species) networks of different connectance. We then compared the impacts of these drivers on three proxies for pollination: visitation rate, number of consecutive visits to the focal plant species and expected number of plants pollinated. We found that the spatial arrangements of plants and pollinator degree interact to determine pollination success, and that the influence of these drivers on pollination depends on how pollination is estimated. For most pollinators, visitation rate increases in more plant mixed landscapes. Compared to the two more functional measures of pollination, visitation rate overestimates pollination service. This is particularly severe in landscapes with high plant intermixing and for generalist pollinators. Interestingly, visitation rate is less influenced by pollinator traits (pollinator degree and body size) than are the two functional metrics, likely because ‘visitation rate’ ignores the order in which pollinators visit plants. However, the visitation sequence order is crucial for the expected number of plants pollinated, since only prior visits to conspecific individuals can contribute to pollination. We show here that this order strongly depends on the spatial arrangements of plants, on pollinator traits and on the interaction between them. Taken together, our findings suggest that visitation rate, the most commonly used proxy for pollination in network studies, should be complemented with more functional metrics which reflect the frequency with which individual pollinators revisit the same plant species. Our findings also suggest that measures of landscape structure such as plant intermixing and density—in combination with pollinators' level of specialism—can improve estimates of the probability of pollination. Read the free Plain Language Summary for this article on the Journal blog.
  •  
7.
  • Liénart, Camilla, et al. (författare)
  • A sprinkling of gold dust : Pine pollen as a carbon source in Baltic Sea coastal food webs
  • 2022
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 67:1, s. 53-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Allochthonous subsidies to marine ecosystems have mainly focused on biogeochemical cycles, but there has also been recent interest in how terrestrial carbon (C) influences marine food webs. In the Baltic Sea, pine (Pinus sylvestris) pollen is found in large amounts in shallow bays in early summer. Pollen is a significant C-source in freshwater ecosystems and may also be important in coastal food webs. We examined the consumption of pollen and autochthonous resources by benthic invertebrates in shallow bays of the Baltic Sea. We used stable isotopes to estimate diets and reconstructed consumer-resource networks (food webs) for grazers and particulate organic matter (POM)-feeders to compare how these different guilds used pollen. We found that P. sylvestris pollen was consumed in small amounts by a variety of animals and in some cases made up a sizeable proportion of invertebrates' diets. However, invertebrates generally depended less on pollen than other resources. The degree of pollen consumption was related to feeding traits, with generalist invertebrate grazers consuming more pollen (> 10% of diet) than the more specialist POM-feeders (< 5% of diet contributed by pollen). POM-feeders may consume additional microbially-degraded pollen which was not identifiable in our model. We suggest that pollen is a small but substantial allochthonous C-source in shallow bay food webs of the Baltic Sea, with the potential to affect the dynamics of these ecosystems. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy