SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Colina L.) ;pers:(Wright G. S.)"

Search: WFRF:(Colina L.) > Wright G. S.

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bouchet, P., et al. (author)
  • JWST MIRI Imager Observations of Supernova SN 1987A
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 965:1
  • Journal article (peer-reviewed)abstract
    • There exist very few mid-infrared (IR) observations of supernovae (SNe) in general. Therefore, SN 1987A, the closest visible SN in 400 yr, gives us the opportunity to explore the mid-IR properties of SNe, the dust in their ejecta, and the surrounding medium and to witness the birth of an SN remnant (SNR). The James Webb Space Telescope, with its high spatial resolution and extreme sensitivity, gives a new view on these issues. We report on the first imaging observations obtained with the Mid-InfraRed Instrument (MIRI). We build temperature maps and discuss the morphology of the nascent SNR. Our results show that the temperatures in the equatorial ring (ER) are quite nonuniform. This could be due to dust destruction in some parts of the ring, as had been assumed in some previous works. We show that the IR emission extends beyond the ER, illustrating the fact that the shock wave has now passed through this ring to affect the circumstellar medium on a larger scale. Finally, while submillimeter Atacama Large Millimeter Array observations have hinted at the location of the compact remnant of SN 1987A, we note that our MIRI data have found no such evidence.
  •  
2.
  • Fransson, Claes, 1951-, et al. (author)
  • Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A
  • 2024
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 383:6685, s. 898-903
  • Journal article (peer-reviewed)abstract
    • The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur. The line emission is spatially unresolved and blueshifted in velocity relative to the supernova rest frame. We interpret the lines as gas illuminated by a source of ionizing photons located close to the center of the expanding ejecta. Photoionization models show that the line ratios are consistent with ionization by a cooling neutron star or a pulsar wind nebula. The velocity shift could be evidence for a neutron star natal kick.
  •  
3.
  • Jones, O. C., et al. (author)
  • Ejecta, Rings, and Dust in SN 1987A with JWST MIRI/MRS
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 958:1
  • Journal article (peer-reviewed)abstract
    • Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1 FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1 FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Ne ii], [Ar ii], [Fe ii], and [Ni ii]. With the exception of [Fe ii] 25.99 μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Fe ii] 5.34 to 25.99 μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by 44 Ti decay.
  •  
4.
  • Rinaldi, P., et al. (author)
  • MIDIS : Strong (H beta plus [OIII]) and Ha Emitters at Redshift z similar or equal to 7-8 Unveiled with JWST NIRCam and MIRI Imaging in the Hubble eXtreme Deep Field
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Journal article (peer-reviewed)abstract
    • We make use of JWST medium-band and broadband NIRCam imaging, along with ultradeep MIRI 5.6 mu m imaging, in the Hubble eXtreme Deep Field to identify prominent line emitters at z similar or equal to 7-8. Out of a total of 58 galaxies at z similar or equal to 7-8, we find 18 robust candidates ( similar or equal to 31%) for (H beta + [O III]) emitters, based on their enhanced fluxes in the F430M and F444W filters, with EW0(H beta +[O III]) similar or equal to 87-2100 angstrom. Among these emitters, 16 lie in the MIRI coverage area and 12 exhibit a clear flux excess at 5.6 mu m, indicating the simultaneous presence of a prominent Ha emission line with EW0(H alpha) similar or equal to 200-3000 angstrom. This is the first time that H alpha emission can be detected in individual galaxies at z > 7. The Ha line, when present, allows us to separate the contributions of H beta and [O III] to the (H beta +[O III]) complex and derive Ha-based star formation rates (SFRs). We find that in most cases [O III]/ H beta > 1. Instead, two galaxies have [O III]/H beta < 1, indicating that the NIRCam flux excess is mainly driven by H beta. Most prominent line emitters are very young starbursts or galaxies on their way to/from the starburst cloud. They make for a cosmic SFR density log(10)( rho(SFRH alpha) (M-circle dot yr(-1) Mpc))similar or equal to - 2.351 3 which is about a quarter of the total value (log(10)( SFR (M-circle dot yr(-1) Mpc))similar or equal to - 1.761 3 ) at z similar or equal to 7-8. Therefore, the strong Ha emitters likely had a significant role in reionization.
  •  
5.
  • Álvarez-Márquez, J., et al. (author)
  • Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Journal article (peer-reviewed)abstract
    • The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 < z < 10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines H alpha and [OII]0.5007 mu m at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Ha fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5-10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2M(circle dot) yr(-1), and stellar masses above 4-9 x 10(7) M-circle dot. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing similar to 6% and similar to 1% of the predicted FIRSTLIGHT population at the 6.5-7.5 and 7.5-8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 mu m emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2-0.02Z(circle dot) and different [OIII]88 mu m/[OIII]0.5007 mu m line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5-90 for H beta, [OIII]0.4959,0.5007 mu m, H alpha and HeI1.083 mu m emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 mu m. [SII]0.6717,0.6731 mu m, and [SIII] 0.9069,0.9532 mu m emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 mu m. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.
  •  
6.
  • Rieke, G. H., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 584-594
  • Journal article (peer-reviewed)abstract
    • MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope [JWST]) operates from 5 to 28: 5 mu m and combines over this range: (1) unprecedented sensitivity levels; (2) subarcsecond angular resolution; (3) freedom from atmospheric interference; (4) the inherent stability of observing in space; and (5) a suite of versatile capabilities including imaging, low- and medium-resolution spectroscopy (with an integral field unit), and coronagraphy. We illustrate the potential uses of this unique combination of capabilities with various science examples: (1) imaging exoplanets; (2) transit and eclipse spectroscopy of exoplanets; (3) probing the first stages of star and planet formation, including identifying bioactive molecules; (4) determining star formation rates and mass growth as galaxies are assembled; and (5) characterizing the youngest massive galaxies.
  •  
7.
  • Wright, G. S., et al. (author)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Journal article (peer-reviewed)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view