SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cook M) ;hsvcat:4"

Sökning: WFRF:(Cook M) > Lantbruksvetenskap

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Downey, Alisen E., et al. (författare)
  • Soil carbon sequestration in urban afforestation sites in New York City
  • 2021
  • Ingår i: Urban Forestry & Urban Greening. - : Elsevier BV. - 1618-8667 .- 1610-8167. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • There is great interest in the ability of afforestation programs to sequester carbon, improve soil health, and provide other ecological benefits to urban areas. However, the capacity of urban soils to support successful afforestation and sequester carbon is poorly understood. This study quantified soil carbon in a series of experimental restoration sites established between 2009 and 2011 as part of the MillionTreesNYC Afforestation Project in New York City. Soil cores (0-100 cm) were collected at 10 sites and analyzed for total carbon content. Data were analyzed with respect to depth (0-10, 10-30, 30-70, 70-90, 90-100 cm), high (six species) versus low (two species) diversity planting palettes, and afforestation success (high or low). Results were compared with data from regional reference forest, degraded urban sites in New York City, and disturbed and undisturbed sites in other cities. High success afforestation sites had significantly larger carbon pools than low success afforestation sites and degraded NYC sites. We suggest that these differences were created by interactions between initial site conditions that facilitated plant community establishment and growth, which in turn increased soil carbon accumulation. These initial site conditions include land use history that influences soil physical and chemical factors, as well as proximity to existing forest stands. Diversity treatments had no effect on soil carbon levels, but these may need a longer time period to emerge. These results suggest that afforestation may enhance the capacity of urban soils to store carbon compared to urban degraded soils, but that urban soil properties and site characteristics constrain this capacity.
  •  
3.
  • Mejía, Gisselle A., et al. (författare)
  • Nitrogen cycling and urban afforestation success in New York City
  • 2022
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 32:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Afforestation projects are a growing focus of urban restoration efforts to rehabilitate degraded landscapes and develop new forests. Urban forests provide myriad valuable ecosystem services essential for urban sustainability and resilience. These essential services are supported by natural soil microbial processes that transform organic matter to critical nutrients for plant community establishment and development. Nitrogen (N) is the most limiting nutrient in forest ecosystems, yet little information is known about N cycling in urban afforestation efforts. This study examined microbially mediated processes of carbon (C) and N cycling in 10 experimental afforested sites established across New York City parklands under the MillionTreesNYC initiative. Long-term research plots were established between 2009 and 2011 at each site with low and high diversity (two vs. six tree species) treatments. In 2018, 1-m soil cores were collected from plots at each site and analyzed for microbial biomass and respiration, potential net N mineralization, and nitrification, denitrification potential, soil inorganic N, and total soil N. Field observations revealed markedly different trajectories between sites that exhibited a closed canopy and leaf litter layer derived from trees that were planted and those that did not fit this description. These two metrics served to group sites into two categories (high vs. low) of afforestation success. We hypothesized that: (1) afforestation success would be correlated with rates of C and N cycling, (2) high diversity restoration techniques would affect these processes, and (3) inherent soil properties interact with plants and environmental conditions to affect the development of these processes over time. We found that high success sites had significantly higher rates of C and N cycling processes, but low and high diversity treatments showed no differences. Low success sites were more likely to have disturbed soil profiles with human-derived debris. Afforestation success appears to be driven by interactions between initial site conditions that facilitate plant community establishment and development that in turn enable N accumulation and cycling, creating positive feedbacks for success. 
  •  
4.
  • Metson, Genevieve, 1988-, et al. (författare)
  • Phosphorus in Phoenix : a budget and spatial representation of phosphorus in an urban ecosystem
  • 2012
  • Ingår i: Ecological Applications. - : John Wiley & Sons. - 1051-0761 .- 1939-5582. ; 22:2, s. 705-721
  • Tidskriftsartikel (refereegranskat)abstract
    • As urban environments dominate the landscape, we need to examine how limiting nutrients such as phosphorus (P) cycle in these novel ecosystems. Sustainable management of P resources is necessary to ensure global food security and to minimize freshwater pollution. We used a spatially explicit budget to quantify the pools and fluxes of P in the Greater Phoenix Area in Arizona, USA, using the boundaries of the Central Arizonaï¿œPhoenix Long-Term Ecological Research site. Inputs were dominated by direct imports of food and fertilizer for local agriculture, while most outputs were small, including water, crops, and material destined for recycling. Internally, fluxes were dominated by transfers of food and feed from local agriculture and the recycling of human and animal excretion. Spatial correction of P dynamics across the city showed that human density and associated infrastructure, especially asphalt, dominated the distribution of P pools across the landscape. Phosphorus fluxes were dominated by agricultural production, with agricultural soils accumulating P. Human features (infrastructure, technology, and waste management decisions) and biophysical characteristics (soil properties, water fluxes, and storage) mediated P dynamics in Phoenix. P cycling was most notably affected by water management practices that conserve and recycle water, preventing the loss of waterborne P from the ecosystem. P is not intentionally managed, and as a result, changes in land use and demographics, particularly increased urbanization and declining agriculture, may lead to increased losses of P from this system. We suggest that city managers should minimize cross-boundary fluxes of P to the city. Reduced P fluxes may be accomplished through more efficient recycling of waste, therefore decreasing dependence on external nonrenewable P resources and minimizing aquatic pollution. Our spatial approach and consideration of both pools and fluxes across a heterogeneous urban ecosystem increases the utility of nutrient budgets for city managers. Our budget explicitly links processes that affect P cycling across space with the management of other resources (e.g., water). A holistic management strategy that deliberately couples the management of P and other resources should be a priority for cities in achieving urban sustainability.
  •  
5.
  • Donin, Angela S., et al. (författare)
  • Evaluating an Intervention to Increase Cereal Fiber Intake in Children: A Randomized Controlled Feasibility Trial
  • 2021
  • Ingår i: Journal of Nutrition. - : Elsevier BV. - 1541-6100 .- 0022-3166. ; 151:2, s. 379-386
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Observational studies have shown that higher cereal fiber intake is associated with reduced type 2 diabetes risk. However, it remains uncertain whether this association is causal. OBJECTIVE: This study evaluated the feasibility of an intervention to increase cereal fiber intake in children using breakfast cereals. METHODS: The study was a 2-arm parallel group randomized controlled trial in 9-10-y-old children, who received free supplies of high-fiber breakfast cereals (>3.5 g/portion) or low-fiber breakfast cereals (<1.0 g/portion) to eat daily for 1 mo with behavioral support to promote adherence. Children provided baseline and 1-mo fasting blood samples, physical measurements, and 24-h dietary recalls. The primary outcome was the group difference in change in plasma total alkylresorcinol (AR) concentration; secondary outcomes were group differences in nutrient intakes and adiposity indices. Analyses (complete case and multiple imputation) were conducted by regressing the final AR concentration on baseline AR in models adjusted for sex, ethnicity, age, and school (random effect). RESULTS: Two-hundred seventy-two children were randomly assigned (137 receiving a low-fiber and 135 a high-fiber diet) and 193 (71%) provided fasting blood samples at baseline and follow-up. Among randomized participants, median (IQR) of baseline AR was 43.1 (24.6-85.5) nmol/L and of cereal fiber intake was 4.5 (2.7-6.4) g; 87% of participants reported consuming the cereal on most or all days. Compared with changes in the low-fiber group, the high-fiber group had greater increases in AR (40.7 nmol/L; 95% CI: 21.7, 59.8 nmol/L, P < 0.0001) and in reported cereal fiber intake (2.9g/d; 95% CI: 2.0, 3.7 g; P < 0.0001). There were no appreciable differences in other secondary outcomes. CONCLUSIONS: We have developed a simple and acceptable nutritional intervention that increases markers of daily cereal fiber intake in children. This intervention could be used to test whether increases in cereal fiber intake in children might reduce insulin resistance. This trial was registered at www.isrctn.com as ISRCTN33260236.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy