SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cook Michael) ;lar1:(kth)"

Sökning: WFRF:(Cook Michael) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, Shreya, et al. (författare)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
2.
  • de Pater, Imke, et al. (författare)
  • An Energetic Eruption With Associated SO 1.707 Micron Emissions at Io's Kanehekili Fluctus and a Brightening Event at Loki Patera Observed by JWST
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 128:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed Io with the James Webb Space Telescope (JWST) while the satellite was in eclipse, and detected thermal emission from several volcanoes. The data were taken as part of our JWST-ERS program #1373 on 15 November 2022. Kanehekili Fluctus was exceptionally bright, and Loki Patera had most likely entered a new brightening phase. Spectra were taken with NIRSpec/IFU at a resolving power R ≈ 2,700 between 1.65 and 5.3 µm. The spectra were matched by a combination of blackbody curves that showed that the highest temperature, ∼1,200 K, for Kanehekili Fluctus originated from an area ∼0.25 km2 in size, and for Loki Patera this high temperature was confined to an area of ∼0.06 km2. Lower temperatures, down to 300 K, cover areas of ∼2,000 km2 for Kanehekili Fluctus, and ∼5,000 km2 for Loki Patera. We further detected the a1Δ ⇒ X3Σ− 1.707 µm rovibronic forbidden SO emission band complex over the southern hemisphere, which peaked at the location of Kanehekili Fluctus. This is the first time this emission has been seen above an active volcano, and suggests that the origin of such emissions is ejection of SO molecules directly from the vent in an excited state, after having been equilibrated at temperatures of ∼1,500 K below the surface, as was previously hypothesized.
  •  
3.
  • Kasliwal, Mansi M., et al. (författare)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
4.
  • Andreoni, Igor, et al. (författare)
  • Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found in all-sky optical surveys, independently of short gamma-ray burst and gravitational-wave triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded >11,200 candidates, 24 of which passed quality checks and selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. We identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB.190106A, the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat, linearly decaying light curves, and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be R < 1775 Gpc(-3) yr(-1) (95% confidence). By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of R.<.4029 Gpc(-3) yr(-1).
  •  
5.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190814bv : Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg(2) at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M-ej < 0.04 M-circle dot at polar viewing angles, or M-ej < 0.03 M-circle dot if the opacity is kappa < 2 cm(2)g(-1). Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be chi < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs.
  •  
6.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  •  
8.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy