SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cronje T) "

Sökning: WFRF:(Cronje T)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
6.
  •  
7.
  • Cronjé, Héléne T., et al. (författare)
  • Genetic evidence implicating natriuretic peptide receptor-3 in cardiovascular disease risk : a Mendelian randomization study
  • 2023
  • Ingår i: BMC Medicine. - 1741-7015. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. Methods: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. Results: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64–0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60–0.92), stroke (0.69, 95% CI 0.50–0.95) and heart failure (0.77, 95% CI 0.58–1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. Conclusions: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.
  •  
8.
  • Giontella, Alice, et al. (författare)
  • Caffeine Intake, Plasma Caffeine Level, and Kidney Function : A Mendelian Randomization Study
  • 2023
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 15:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization (MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of >47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same pharmacological effect. Further research is needed to distinguish whether the observed effects on kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective effects of greater intake of caffeine-containing beverages, particularly given the widespread use of drinks containing caffeine and the increasing burden of kidney disease.
  •  
9.
  • Giontella, Alice, et al. (författare)
  • Renoprotective effects of genetically proxied fibroblast growth factor 21 : Mendelian randomization, proteome-wide and metabolome-wide association study
  • 2023
  • Ingår i: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fibroblast growth factor 21 (FGF21) has demonstrated efficacy for reducing liver fat and reversing non-alcoholic steatohepatitis in phase 2 clinical trials. It is also postulated to have anti-fibrotic effects and therefore may be amenable to repurposing for the prevention and treatment of chronic kidney disease (CKD).Methods: We leverage a missense genetic variant, rs739320 in the FGF21 gene, that associates with magnetic resonance imaging-derived liver fat as a clinically validated and biologically plausible instrumental variable for studying the effects of FGF21 analogs. Performing Mendelian randomization, we ascertain associations between instrumented FGF21 and kidney phenotypes, cardiometabolic disease risk factors, as well as the circulating proteome (Somalogic, 4907 aptamers) and metabolome (Nightingale platform, 249 metabolites).Results: We report consistent renoprotective associations of genetically proxied FGF21 effect, including higher glomerular filtration rates (p = 1.9 x 10(-4)), higher urinary sodium excretion (p = 5.1 x 10(-11)), and lower urine albumin-creatinine ratio (p = 3.6 x 10(-5)). These favorable effects translated to lower CKD risk (odds ratio per rs739320 C-allele, 0.96; 95%CI, 0.94-0.98; p = 3.2 x 10(-4)). Genetically proxied FGF21 effect was also associated with lower fasting insulin, waist-to-hip ratio, blood pressure (systolic and diastolic BP, p < 1.0 x 10(- 07)) and blood lipid (low-density lipoprotein cholesterol, triglycerides and apolipoprotein B, p < 6.5 x 10(-24)) profiles. The latter associations are replicated in our metabolome-wide association study. Proteomic perturbations associated with genetically predicted FGF21 effect were consistent with fibrosis reduction.Conclusion: This study highlights the pleiotropic effects of genetically proxied FGF21 and supports a re-purposing opportunity for the treatment and prevention of kidney disease specifically. Further work is required to
  •  
10.
  • Woolf, Benjamin, et al. (författare)
  • Appraising the causal relationship between plasma caffeine levels and neuropsychiatric disorders through Mendelian randomization
  • 2023
  • Ingår i: BMC Medicine. - : Springer Nature. - 1741-7015. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Caffeine exposure modifies the turnover of monoamine neurotransmitters, which play a role in several neuropsychiatric disorders. We conducted a Mendelian randomization study to investigate whether higher plasma caffeine levels are causally associated with the risk of anorexia nervosa, bipolar disorder, major depressive disorder (MDD), and schizophrenia.Methods: Summary-level data on the neuropsychiatric disorders were obtained from large-scale genome-wide association studies (GWASs) of European ancestry participants (n = 72,517 to 807,553) and meta-analyzed with the corresponding data from the FinnGen study (n = 356,077). Summary-level data on plasma caffeine were extracted from a GWAS meta-analysis of 9876 European ancestry individuals. The Mendelian randomization analyses estimated the Wald ratio for each genetic variant and meta-analyzed the variant-specific estimates using multiplicative random effects meta-analysis.Results: After correcting for multiple testing, genetically predicted higher plasma caffeine levels were associated with higher odds of anorexia nervosa (odds ratio [OR] = 1.124; 95% confidence interval [CI] = 1.024-1.238, p(FDR) = 0.039) and a lower odds of bipolar disorder (OR = 0.905, 95% CI = 0.827-0.929, p(FDR) = 0.041) and MDD (OR = 0.965, 95% CI = 0.937-0.995, p(FDR) = 0.039). Instrumented plasma caffeine levels were not associated with schizophrenia (OR = 0.986, 95% CI = 0.929-1.047, p(FDR) = 0.646).Conclusions: These Mendelian randomization findings indicate that long-term higher plasma caffeine levels may lower the risk of bipolar disorder and MDD but increase the risk of anorexia nervosa. These results warrant further research to explore whether caffeine consumption, supplementation, or abstinence could render clinically relevant therapeutic or preventative psychiatric effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy