SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cummings Teresa) "

Sökning: WFRF:(Cummings Teresa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lu, Yingchang, et al. (författare)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
2.
  • Mesher, David, et al. (författare)
  • Population-level effects of human papillomavirus vaccination programs on infections with nonvaccine genotypes
  • 2016
  • Ingår i: Emerging Infectious Diseases. - : Centers for Disease Control and Prevention (CDC). - 1080-6040 .- 1080-6059. ; 22:10, s. 1732-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed human papillomavirus (HPV) prevalences during prevaccination and postvaccination periods to consider possible changes in nonvaccine HPV genotypes after introduction of vaccines that confer protection against 2 high-risk types, HPV16 and HPV18. Our meta-analysis included 9 studies with data for 13,886 girls and women ≤19 years of age and 23,340 women 20–24 years of age. We found evidence of cross-protection for HPV31 among the younger age group after vaccine introduction but little evidence for reductions of HPV33 and HPV45. For the group this same age group, we also found slight increases in 2 nonvaccine high-risk HPV types (HPV39 and HPV52) and in 2 possible high-risk types (HPV53 and HPV73). However, results between age groups and vaccines used were inconsistent, and the increases had possible alternative explanations; consequently, these data provided no clear evidence for type replacement. Continued monitoring of these HPV genotypes is important.
  •  
3.
  • Poch, Christine M, et al. (författare)
  • Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors
  • 2022
  • Ingår i: Nature Cell Biology. - Stockholm : Karolinska Institutet, Dept of Cell and Molecular Biology. - 1465-7392 .- 1476-4679.
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host–graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.
  •  
4.
  • Van Deerlin, Vivian M, et al. (författare)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy