SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlqvist P) ;lar1:(kth)"

Sökning: WFRF:(Dahlqvist P) > Kungliga Tekniska Högskolan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Horwood, Joshua T. M., et al. (författare)
  • Flow Instabilities in Gas Turbine Chute Seals
  • 2020
  • Ingår i: Journal of engineering for gas turbines and power. - : ASME. - 0742-4795 .- 1528-8919. ; 142:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The ingress of hot annulus gas into stator-rotor cavities is an important topic to engine designers. Rim-seals reduce the pressurized purge required to protect highly stressed components. This paper describes an experimental and computational study of flow through a turbine chute seal. The computations-which include a 360 deg domain-were undertaken using dlr trace's time-marching solver. The experiments used a low Reynolds number turbine rig operating with an engine-representative flow structure. The simulations provide an excellent prediction of cavity pressure and swirl, and good overall agreement of sealing effectiveness when compared to experiment. Computation of flow within the chute seal showed strong shear gradients which influence the pressure distribution and secondary-flow field near the blade leading edge. High levels of shear across the rim-seal promote the formation of large-scale structures at the wheel-space periphery; the number and speed of which were measured experimentally and captured, qualitatively and quantitatively, by computations. A comparison of computational domains ranging from 30 deg to 360 deg indicates that steady features of the flow are largely unaffected by sector size. However, differences in large-scale flow structures were pronounced with a 60 deg sector and suggest that modeling an even number of blades in small sector simulations should be avoided.
  •  
2.
  • Horwood, Joshua T. M., et al. (författare)
  • FLOW INSTABILITIES IN GAS TURBINE CHUTE SEALS
  • 2019
  • Ingår i: PROCEEDINGS OF THE ASME TURBO EXPO. - : ASME Press.
  • Konferensbidrag (refereegranskat)abstract
    • The ingress of hot annulus gas into stator-rotor cavities is an important topic to engine designers. Rim-seals reduce the pressurised purge required to protect highly-stressed components. This paper describes an experimental and computational study of flow through a turbine chute seal. The computations which include a 360 degrees domain - were undertaken using DLR TRACE's time-marching solver. The experiments used a low Reynolds number turbine rig operating with an engine-representative flow structure. The simulations provide an excellent prediction of cavity pressure and swirl, and good overall agreement of sealing effectiveness when compared to experiment. Computation of flow within the chute seal showed strong shear gradients which influence the pressure distribution and secondary-flow field near the blade leading edge. High levels of shear across the rim-seal promote the formation of large-scale structures at the wheel-space periphery; the number and speed of which were measured experimentally and captured, qualitatively and quantitatively, by computations. A comparison of computational domains ranging from 30 degrees to 360 degrees indicate that steady features of the flow are largely unaffected by sector size. However, differences in large-scale flow structures were pronounced with a 60 degrees sector and suggest that modelling an even number of blades in small sector simulations should be avoided.
  •  
3.
  • Wells, Daniel J., et al. (författare)
  • Observations of phase changes in monoolein during high viscous injection
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union Of Crystallography. - 0909-0495 .- 1600-5775. ; 29:3, s. 602-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy