SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Backer T) ;mspu:(researchreview)"

Search: WFRF:(De Backer T) > Research review

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rieth, M., et al. (author)
  • Recent progress in research on tungsten materials for nuclear fusion applications in Europe
  • 2013
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 432:1-3, s. 482-500
  • Research review (peer-reviewed)abstract
    • The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.
  •  
2.
  • Huang, S., et al. (author)
  • Systematic review and literature appraisal on methodology of conducting and reporting critical-care echocardiography studies: a report from the European Society of Intensive Care Medicine PRICES expert panel
  • 2020
  • In: Annals of Intensive Care. - : SPRINGER. - 2110-5820. ; 10:1
  • Research review (peer-reviewed)abstract
    • Background The echocardiography working group of the European Society of Intensive Care Medicine recognized the need to provide structured guidance for future CCE research methodology and reporting based on a systematic appraisal of the current literature. Here is reported this systematic appraisal. Methods We conducted a systematic review, registered on the Prospero database. A total of 43 items of common interest to all echocardiography studies were initially listed by the experts, and other "topic-specific" items were separated into five main categories of interest (left ventricular systolic function, LVSF n = 15, right ventricular function, RVF n = 18, left ventricular diastolic function, LVDF n = 15, fluid management, FM n = 7, and advanced echocardiography techniques, AET n = 17). We evaluated the percentage of items reported per study and the fraction of studies reporting a single item. Results From January 2000 till December 2017 a total of 209 articles were included after systematic search and screening, 97 for LVSF, 48 for RVF, 51 for LVDF, 36 for FM and 24 for AET. Shock and ARDS were relatively common among LVSF articles (both around 15%) while ARDS comprised 25% of RVF articles. Transthoracic echocardiography was the main echocardiography mode, in 87% of the articles for AET topic, followed by 81% for FM, 78% for LVDF, 70% for LVSF and 63% for RVF. The percentage of items per study as well as the fraction of study reporting an item was low or very low, except for FM. As an illustration, the left ventricular size was only reported by 56% of studies in the LVSF topic, and half studies assessing RVF reported data on pulmonary artery systolic pressure. Conclusion This analysis confirmed sub-optimal reporting of several items listed by an expert panel. The analysis will help the experts in the development of guidelines for CCE study design and reporting.
  •  
3.
  • Landrigan, Philip J., et al. (author)
  • Human Health and Ocean Pollution
  • 2020
  • In: Annals of Global Health. - : Ubiquity Press. - 2214-9996. ; 86:1
  • Research review (peer-reviewed)abstract
    • Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood.Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health.Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention.Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths.Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks.Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale.Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries.Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view