SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delacroix Christian) "

Sökning: WFRF:(Delacroix Christian)

  • Resultat 1-10 av 39
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wagner, Kevin, et al. (författare)
  • Imaging low-mass planets within the habitable zone of α Centauri
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, alpha Centauri. Based on 75-80% of the best quality images from 100h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes. Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Absil, Olivier, et al. (författare)
  • The VORTEX project : first results and perspectives
  • 2014
  • Ingår i: Adaptive Optics Systems IV. - : SPIE. - 9780819496164
  • Konferensbidrag (refereegranskat)abstract
    • Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500: 1 in the L band, which translates into a raw contrast of about 6 x 10(-5) at 2 lambda/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0 : 1 0 0). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short-and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images.
  •  
6.
  • Absil, Oliver, et al. (författare)
  • Three years of harvest with the vector vortex coronagraph in the thermal infrared
  • 2016
  • Ingår i: Ground-Based and Airborne Instrumentation for Astronomy VI. - : SPIE - International Society for Optical Engineering. - 9781510601963 ; , s. 1-14
  • Konferensbidrag (refereegranskat)abstract
    • For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
  •  
7.
  •  
8.
  • Carlomagno, Brunella, et al. (författare)
  • Design and performance simulations of mid-IR AGPMs for ELT/METIS applications
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • The direct detection of exoplanets requires the use of dedicated, highcontrast imaging instruments. In this context, vector vortex coronagraphs(VVCs) are considered to be among the most promising solutions to reachhigh contrast at small angular separations. They feature a small innerworking angle (down to 0.9 lambda/D), high throughput, clear off-axis360° discovery space, and are simple to implement. The AGPM (AnnularGroove Phase Mask) is an implementation of the vortex phase mask, whichprovides achromaticity over an appreciable spectral range thanks to the useof sub-wavelength gratings. The grating profile can be optimized based onthe rigorous coupled wave analysis (RCWA) to achieve a quasi-achromaticphase shift up to a very broad band (L+M band: 3.5-5.1μm). These deviceshave been manufactured onto CVD diamond substrates, using reactiveion etching. In this communication, I will first present the latest RCWAConference 9605: Techniques and Instrumentationfor Detection of Exoplanets VIIR eturn to Contents +1 360 676 3290 · help@spie.org 631simulations performed in the L, M and N spectral bands, and for somecombinations of these bands. The resulting optimized AGPMs could beperfectly integrated in the E-ELT/METIS instrument, which aims at detectingand characterizing exoplanets by direct imaging. The target contrast forMETIS is <1e-4 at 2 lambda/D (~40 mas in L band), which translates into apeak rejection rate of few hundreds for the AGPMs. Secondly, the opticalpropagation within the METIS instrument will be studied to determine theperformances of a vortex coronagraph at the focus of METIS. In particular,the effect of the central obstruction, spiders, missing E-ELT segments,and pointing jitter will be analysed, together with the sensitivity to tip-tilt.Finally, the atmosphere and the AO contributions will be considered toobtain more realistic results.
  •  
9.
  • Carlomagno, Brunella, et al. (författare)
  • End-to-end simulations of the E-ELT/METIS coronagraphs
  • 2016
  • Ingår i: Adaptive Optics Systems V. - : SPIE - International Society for Optical Engineering. ; , s. 1-10
  • Konferensbidrag (refereegranskat)abstract
    • The direct detection of low-mass planets in the habitable zone of nearby stars is an important science case for future E-ELT instruments such as the mid-infrared imager and spectrograph METIS, which features vortex phase masks and apodizing phase plates (APP) in its baseline design. In this work, we present end-to-end performance simulations, using Fourier propagation, of several METIS coronagraphic modes, including focal-plane vortex phase masks and pupil-plane apodizing phase plates, for the centrally obscured, segmented E-ELT pupil. The atmosphere and the AO contributions are taken into account. Hybrid coronagraphs combining the advantages of vortex phase masks and APPs are considered to improve the METIS coronagraphic performance.
  •  
10.
  • Carlomagno, Brunella, et al. (författare)
  • Mid-IR AGPMs for ELT applications
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • The mid-infrared region is well suited for exoplanet detection thanks to the reduced contrast between the planet and its host star with respect to the visible and near-infrared wavelength regimes. This contrast may be further improved with Vector Vortex Coronagraphs (VVCs), which allow us to cancel the starlight. One flavour of the VVC is the AGPM (Annular Groove Phase Mask), which adds the interesting properties of subwavelength gratings (achromaticity, robustness) to the already known properties of the VVC. In this paper, we present the optimized designs, as well as the expected performances of mid-IR AGPMs etched onto synthetic diamond substrates, which are considered for the E-ELT/METIS instrument.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
  • [1]234Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy