SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dengjel J) "

Sökning: WFRF:(Dengjel J)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Carmona-Gutierrez, D., et al. (författare)
  • Guidelines and recommendations on yeast cell death nomenclature
  • 2018
  • Ingår i: Microbial Cell. - : Shared Science Publishers OG. - 2311-2638. ; 5:1, s. 4-31
  • Forskningsöversikt (refereegranskat)abstract
    • Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.
  •  
5.
  • Carmona-Gutierrez, D, et al. (författare)
  • The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 651-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4′-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.
  •  
6.
  •  
7.
  •  
8.
  • Bahl, A, et al. (författare)
  • PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping
  • 2023
  • Ingår i: Journal of cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 15:1, s. 34-
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances’ mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.
  •  
9.
  • Bahl, A, et al. (författare)
  • PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping
  • 2023
  • Ingår i: Journal of cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 15:1, s. 34-
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances’ mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.
  •  
10.
  • Eisenberg, Tobias, et al. (författare)
  • Cardioprotection and lifespan extension by the natural polyamine spermidine
  • 2016
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 22:12, s. 1428-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy