SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dickson Dennis W.) ;lar1:(gu)"

Sökning: WFRF:(Dickson Dennis W.) > Göteborgs universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
2.
  •  
3.
  • Kun-Rodrigues, Celia, et al. (författare)
  • A comprehensive screening of copy number variability in dementia with Lewy bodies.
  • 2019
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.
  •  
4.
  • Bras, Jose, et al. (författare)
  • Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies.
  • 2014
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 23:23, s. 6139-6146
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
  •  
5.
  • Kun-Rodrigues, Celia, et al. (författare)
  • Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies
  • 2017
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • . C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of . C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of . C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that . C9orf72 repeat expansions are not causally associated with DLB.
  •  
6.
  • Parra Bravo, Celeste, et al. (författare)
  • Human iPSC 4R tauopathy model uncovers modifiers of tau propagation.
  • 2024
  • Ingår i: Cell. - 1097-4172.
  • Tidskriftsartikel (refereegranskat)abstract
    • Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
  •  
7.
  • Rademakers, Rosa, et al. (författare)
  • Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:2, s. 200-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
  •  
8.
  • Sundal, Christina, et al. (författare)
  • Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): A misdiagnosed disease entity
  • 2012
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X .- 1878-5883. ; 314, s. 130-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary diffuse leukoencephalopathy with spheroids (HDLS) was originally described in a large Swedish pedigree. Since then, 22 reports describing a total of 13 kindreds and 11 sporadic cases have been published. Inheritance is autosomal dominant, albeit the gene is unknown. Here we report on the clinical findings, genealogical data, brain MRI data, and autopsy/biopsy findings of four probands from three independently ascertained novel families from Norway, Germany and US. We identified a 39-year-old female and her twin sister, a 52-year-old male and a 47-year-old male with progressive neurological illness characterized by personality changes, cognitive decline and motor impairments, such as gait problems, bradykinesia, tremor and rigidity. Brain MRI showed white matter abnormalities with frontal prominence. Brain biopsy/autopsies were consistent with HDLS. HDLS is an under-recognized disease and in reporting these cases, we aim to increase the awareness of the disorder. Due to varied and wide phenotypic presentations, which may imitate several neurodegenerative diseases, HDLS can be difficult to diagnose. Definitive diagnosis can be established only by direct brain tissue examination. Familiarity with the clinical presentation and typical neuroimaging findings may be helpful in narrowing the diagnosis. © 2011 Elsevier B.V. All rights reserved.
  •  
9.
  • Sundal, Christina, et al. (författare)
  • MRI characteristics and scoring in HDLS due to CSF1R gene mutations.
  • 2012
  • Ingår i: Neurology. - 1526-632X. ; 79:6, s. 566-74
  • Tidskriftsartikel (refereegranskat)abstract
    • To describe the brain MRI characteristics of hereditary diffuse leukoencephalopathy with spheroids (HDLS) with known mutations in the colony-stimulating factor 1 receptor gene (CSF1R) on chromosome 5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy