SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dickson Dennis W.) ;pers:(Trojanowski John Q)"

Search: WFRF:(Dickson Dennis W.) > Trojanowski John Q

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
2.
  • Nelson, Peter T., et al. (author)
  • Limbic-predominant age-related TDP-43 encephalopathy (LATE) : consensus working group report
  • 2019
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 142, s. 1503-1527
  • Research review (peer-reviewed)abstract
    • We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, similar to 25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-beta plaques and tauopathy. Given that the oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
  •  
3.
  • Nelson, Peter T., et al. (author)
  • Reply : LATE to the PART-y
  • 2019
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 142
  • Journal article (other academic/artistic)
  •  
4.
  • Crary, John F., et al. (author)
  • Primary age-related tauopathy (PART) : a common pathology associated with human aging
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 128:6, s. 755-766
  • Journal article (peer-reviewed)abstract
    • We recommend a new term, "primary age-related tauopathy" (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer's disease (AD), in the absence of amyloid (A beta) plaques. For these "NFT+/A beta-aEuroe brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as "tangle-only dementia" and "tangle-predominant senile dementia", are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of A beta accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.
  •  
5.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
6.
  • Kovacs, Gabor G., et al. (author)
  • Aging-related tau astrogliopathy (ARTAG) : harmonized evaluation strategy
  • 2016
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 131:1, s. 87-102
  • Journal article (peer-reviewed)abstract
    • Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
  •  
7.
  • Kovacs, Gabor G., et al. (author)
  • Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG)
  • 2017
  • In: Journal of Neuropathology and Experimental Neurology. - : Oxford University Press (OUP). - 0022-3069 .- 1554-6578. ; 76:7, s. 605-619
  • Journal article (peer-reviewed)abstract
    • Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was > 60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (> 90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.
  •  
8.
  • Kun-Rodrigues, Celia, et al. (author)
  • A comprehensive screening of copy number variability in dementia with Lewy bodies.
  • 2019
  • In: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 75
  • Journal article (peer-reviewed)abstract
    • The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.
  •  
9.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
10.
  • Couthouis, Julien, et al. (author)
  • A yeast functional screen predicts new candidate ALS disease genes
  • 2011
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:52, s. 20881-20890
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of the segenes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having amore severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15
Type of publication
journal article (14)
research review (1)
Type of content
peer-reviewed (14)
other academic/artistic (1)
Author/Editor
Dickson, Dennis W (15)
Cairns, Nigel J. (10)
Alafuzoff, Irina (9)
Kovacs, Gabor G. (8)
Attems, Johannes (7)
show more...
Beach, Thomas G. (7)
Schneider, Julie A. (7)
Masliah, Eliezer (6)
Halliday, Glenda M (6)
Nelson, Peter T. (6)
Rademakers, Rosa (5)
Seeley, William W. (5)
Murray, Melissa E (5)
Ghetti, Bernardino (5)
Revesz, Tamas (4)
Morris, John C (4)
Rogaeva, Ekaterina (4)
Halliday, Glenda (4)
Petersen, Ronald C. (4)
Hof, Patrick R (4)
St George-Hyslop, Pe ... (4)
Graff-Radford, Neill ... (4)
Zetterberg, Henrik, ... (3)
Al-Sarraj, Safa (3)
Ferrer, Isidro (3)
Giaccone, Giorgio (3)
Seilhean, Danielle (3)
Duyckaerts, Charles (3)
Neumann, Manuela (3)
Ince, Paul G. (3)
Lleó, Alberto (3)
Clarimon, Jordi (3)
Hardy, John (3)
McKee, Ann C (3)
Ross, Owen A. (3)
Lashley, Tammaryn (3)
Troakes, Claire (3)
Pastor, Pau (3)
Boeve, Bradley F (3)
Hyman, Bradley T (3)
Galasko, Douglas (3)
Wisniewski, Thomas (3)
Ansorge, Olaf (3)
Honig, Lawrence S (3)
Pickering-Brown, Stu ... (3)
van Deerlin, Viviann ... (3)
Van Deerlin, Viviann ... (3)
Crary, John F. (3)
Arnold, Steven E. (3)
show less...
University
Uppsala University (9)
Lund University (4)
University of Gothenburg (3)
Umeå University (1)
Language
English (15)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view