SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Diekmann Jan) ;pers:(Naaf Tobias)"

Sökning: WFRF:(Diekmann Jan) > Naaf Tobias

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Schuyter, Wim, et al. (författare)
  • Declining potential nectar production of the herb layer in temperate forests under global change
  • 2024
  • Ingår i: Journal of Ecology. - 0022-0477 .- 1365-2745. ; 112:4, s. 832-847
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild pollinators are crucial for ecosystem functioning and human food production and often rely on floral resources provided by different (semi-) natural ecosystems for survival. Yet, the role of European forests, and especially the European forest herb layer, as a potential provider of floral resources for pollinators has scarcely been quantified.In this study, we measured the potential nectar production (PNP) of the forest herb layer using resurvey data across 3326 plots in temperate forests in Europe, with an average time interval of 41 years between both surveys in order to assess (i) the importance of the forest herb layer in providing nectar for wild pollinators, (ii) the intra-annual variation of PNP, (iii) the overall change in PNP between survey periods and (iv) the change in intra-annual variation of PNP between survey periods. The PNP estimates nectar availability based on the relative cover of different plant species in the forest herb layer. Although PNP overestimates actual nectar production, relative differences amongst plots provide a valid and informative way to analyse differences across time and space.Our results show that the forest herb layer has a large potential for providing nectar for wild pollinator communities, which is greatest in spring, with an average PNP of almost 16 g sugar/m2/year. However, this potential has drastically declined (mean plot-level decline >24%).Change in light availability, associated with shifts in canopy structure and canopy composition, is the key driver of temporal PNP changes.Synthesis. Our study shows that if management activities are carefully planned to sustain nectar-producing plant species for wild pollinators, European forest herb layers and European forests as a whole can play key roles in sustaining wild pollinator populations.
  •  
2.
  • Naaf, Tobias, et al. (författare)
  • Context matters : the landscape matrix determines the population genetic structure of temperate forest herbs across Europe
  • 2022
  • Ingår i: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 37:5, s. 1365-1384
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations.Objectives We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs. We asked, whether different arable crops have different effects, and whether the orientation of linear landscape elements relative to the gene dispersal direction matters.Methods We analysed the species' population genetic structures in seven agricultural landscapes across temperate Europe using microsatellite markers. These were modelled as a function of landscape composition and configuration, which we quantified in buffer zones around, and in rectangular landscape strips between, plant populations.Results Landscape effects were diverse and often contrasting between species, reflecting their association with different pollen- or seed dispersal vectors. Differentiating crop types rather than lumping them together yielded higher proportions of explained variation. Some linear landscape elements had both a channelling and hampering effect on gene flow, depending on their orientation.Conclusions Landscape structure is a more important determinant of the species' population genetic structure than habitat loss and fragmentation per se. Landscape planning with the aim to enhance the functional connectivity among spatially isolated plant populations should consider that even species of the same ecological guild might show distinct responses to the landscape structure.
  •  
3.
  • Naaf, Tobias, et al. (författare)
  • Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs
  • 2021
  • Ingår i: Landscape Ecology. - : Springer Science and Business Media LLC. - 0921-2973 .- 1572-9761. ; 36:10, s. 2831-2848
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult.Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators.Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes.Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum.Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation.
  •  
4.
  • Plue, Jan, et al. (författare)
  • Climatic control of forest herb seed banks along a latitudinal gradient
  • 2013
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 22:10, s. 1106-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.
  •  
5.
  • Plue, Jan, et al. (författare)
  • Where does the community start, and where does it end? Including the seed bank to reassess forest herb layer responses to the environment
  • 2017
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 28:2, s. 424-435
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation.
  •  
6.
  • Vanneste, Thomas, et al. (författare)
  • Contrasting microclimates among hedgerows and woodlands across temperate Europe
  • 2020
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 281
  • Tidskriftsartikel (refereegranskat)abstract
    • Hedgerows have the potential to facilitate the persistence and migration of species across landscapes, mostly due to benign microclimatic conditions. This thermal buffering function may become even more important in the future for species migration under climate change. Unfortunately, there is a lack of empirical studies quantifying the microclimate of hedgerows, particularly at broad geographical scales. Here we monitored sub-canopy temperatures using 168 miniature temperature sensors distributed along woodland-hedgerow transects, and spanning a 1600-km macroclimatic gradient across Europe. First, we assessed the variation in the temperature offset (that is, the difference between sub-canopy and corresponding macroclimate temperatures) for minimum, mean and maximum temperatures along the woodland-hedgerow transects. Next, we linked the observed patterns to macroclimate temperatures as well as canopy structure, overstorey composition and hedgerow characteristics. The sub-canopy versus macroclimate temperature offset was on average 0.10 degrees C lower in hedgerows than in woodlands. Minimum winter temperatures were consistently lower by 0.10 degrees C in hedgerows than in woodlands, while maximum summer temperatures were 0.80 degrees C higher, albeit mainly around the woodland-hedgerow ecotone. The temperature offset was often negatively correlated with macroclimate temperatures. The slope of this relationship was lower for maximum temperatures in hedgerows than in woodlands. During summer, canopy cover, tree height and hedgerow width had strong cooling effects on maximum mid-day temperatures in hedgerows. The effects of shrub height, shrub cover and shade-casting ability, however, were not significant. To our knowledge, this is the first study to quantify hedgerow microclimates along a continental-scale environmental gradient. We show that hedgerows are less efficient thermal insulators than woodlands, especially at high ambient temperatures (e.g. on warm summer days). This knowledge will not only result in better predictions of species distribution across fragmented landscapes, but will also help to elaborate efficient strategies for biodiversity conservation and landscape planning.
  •  
7.
  • Vanneste, Thomas, et al. (författare)
  • Plant diversity in hedgerows and road verges across Europe
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:7, s. 1244-1257
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear landscape elements such as hedgerows and road verges have the potential to mitigate the adverse effects of habitat fragmentation and climate change on species, for instance, by serving as a refuge habitat or by improving functional connectivity across the landscape. However, so far this hypothesis has not been evaluated at large spatial scales, preventing us from making generalized conclusions about their efficacy and implementation in conservation policies. Here, we assessed plant diversity patterns in 336 vegetation plots distributed along hedgerows and road verges, spanning a macro-environmental gradient across temperate Europe. We compared herb-layer species richness and composition in these linear elements with the respective seed-source (core) habitats, that is, semi-natural forests and grasslands. Next, we assessed how these differences related to several environmental drivers acting either locally, at the landscape level or along the studied macro-ecological gradient. Across all regions, about 55% of the plant species were shared between forests and hedgerows, and 52% between grasslands and road verges. Habitat-specialist richness was 11% lower in the linear habitats than in the core habitats, while generalist richness was 14% higher. The difference in floristic composition between both habitat types was mainly due to species turnover, and not nestedness. Most notably, forest-specialist richness in hedgerows responded positively to tree cover, tree height and the proportion of forests in the surrounding landscape, while generalist richness was negatively affected by tree height and buffering effect of trees on subcanopy temperatures. Grassland and road verge diversity was mainly influenced by soil properties, with positive effects of basic cation levels on the number of specialists and those of bioavailable soil phosphorus on generalist diversity. Synthesis and applications. We demonstrate that linear landscape elements provide a potential habitat for plant species across Europe, including slow-colonizing specialists. Additionally, our results stress the possibility for land managers to modify local habitat features (e.g. canopy structure, subcanopy microclimate, soil properties, mowing regime) through management practices to enhance the colonization success of specialists in these linear habitats. These findings underpin the management needed to better conserving the biodiversity of agricultural landscapes across broad geographical scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy