SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dikeos D) "

Sökning: WFRF:(Dikeos D)

  • Resultat 1-10 av 16
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mullins, N., et al. (författare)
  • Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology
  • 2021
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 53:6, s. 817-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies. Genome-wide association analyses of 41,917 bipolar disorder cases and 371,549 controls of European ancestry provide new insights into the etiology of this disorder and identify novel therapeutic leads and potential opportunities for drug repurposing.
  •  
2.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
3.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:8, s. 1207-
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
4.
  •  
5.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - 1061-4036. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
6.
  • Marshall, Christian R., et al. (författare)
  • Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 49:1, s. 27-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 x 10(-15)), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 x 10(-6)). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 x 10(-11)) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 x 10(-5)). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
  •  
7.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy