SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dong Li) ;mspu:(licentiatethesis)"

Sökning: WFRF:(Dong Li) > Licentiatavhandling

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dong, Beibei (författare)
  • Dynamic modeling of MEA-based CO2 capture in biomass-fired CHP plants
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Global warming is a significant threat to our planet. Adopting the Paris Agreement is a global action that aims to reduce greenhouse gas emissions. An extensive deployment of negative emission technologies (NETs) is required to achieve the targets set by the Paris Agreement. Bioenergy with carbon capture and storage (BECCS) is emerging as one of the most promising NETs. Among different biomass utilization processes, integrating BECCS with biomass-fired and waste-fired combined heat and power (bio-CHP and w-CHP) plants has been considered the most feasible solution. Bio/w-CHP plants are characterized by high fluctuations in operation, which can result in more dynamic variations of flue gas (FG) flowrates and compositions and available heat for CO2 capture. Such changes can clearly affect the performance of CO2 capture; therefore, doing dynamic simulations becomes crucial.This thesis aims to investigate the performance of different dynamic physical model-based approaches and provide suggestions for approach selection. In addition, the data-driven modeling approach, which is an emerging technology, has also been tested.Three physical model-based approaches include the ideal static model (IST), the dynamic approach without control (Dw/oC), and the dynamic approach with control (DwC). To compare their performance, the operating data from an actual waste CHP plant is employed. Various cases have been defined considering different critical operating parameters, including the FG flowrate, the CO2 concentration (CO2vol%), and the available heat for CO2 capture. Apparent differences can be observed in the results from different approaches. For example, when the CO2vol% drops from 15.7 % to 9.7 % (about 38 %) within 4 hours, the difference in the captured CO2 can be up to 22% between DwC and Dw/oC. It is worth noting that when there are both increases and decreases in the variations of parameters, the differences become smaller. Based on the comparison, the recommendations on approaches have been summarized. Dw/oC is recommended for checking the boundary of safety operation by the response analysis. DwC is recommended for designing the control system, observing the flexible dynamic operation, estimating the short-term CO2 capture potential, and optimizing the hourly dynamic operation. IST is recommended for estimating the long-term CO2 capture potential, and optimizing the long-term dynamic operation when the input parameters vary not as often as hourly.A data-driven model, Informer, is developed to model CO2 capture dynamically. The dataset is generated by using a physical model. The FG flowrate, the CO2vol%, the lean solvent flowrate, and the available heat for CO2 capture are employed as input parameters, and the CO2 capture rate and the energy penalty are chosen as outputs. The results show that Informer can accurately predict dynamic CO2 capture. The mean absolute percentage error (MAPE) was found to be 6.2% and 2.7% for predicting the CO2 capture rate and energy penalty, respectively.
  •  
2.
  • Yuan, Kang (författare)
  • Thermal and Mechanical Behaviors of High Temperature Coatings
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With superior oxidation and corrosion resistance, metallic coatings (i.e. diffusion coatings and MCrAlX coatings) are widely used to protect hot components made of superalloys in turbine engines. Two issues are critically important for the coating at high temperatures: thermal property related to oxidation/corrosion behavior and microstructure stability, and mechanical properties (e.g. creep and fatigue). The aim of this project is to develop better understanding of the thermal and mechanical behaviors of metallic coatings on superalloys and to improve the accuracy of prediction of their lifetime by thermodynamic modeling. The present work includes an investigation on the oxidation behavior of MCrAlX coating with a new lifetimeprediction model and a study on the influence of diffusion coatings on creep and fatigue behaviors of the superalloy IN792.Experiments on isothermal and thermal cycling oxidation were designed to investigate the oxidation behavior of a HVOF CoNiCrAlYSi coating on superalloy IN792. It is found that the oxidation behaviors of the coating are related to its thermodynamic property. A diffusion model has been established using the homogenization models in the DICTRA software and taking into consideration of the influence of surface oxidation, coating-substrate interdiffusion and diffusion blocking effect caused by internal voids and oxides. The simulation results show an improved accuracy of lifetime prediction by introducing the diffusion blocking effect.Microstructural evolution during creep process at high temperatures was studied in different diffusion coatings (NiAl and PtAl). It is found that the inward diffusion of aluminum controls the thickening rate of the diffusion coatings. The developed coatings displayed two types of mechanical behavior - being easily plasticized or cracked - dependent on temperature and type of coating, and therefore could be considered as non-load carrying material during creep test. The influence of cracking of PtAl coating on the high-cycle fatigue (HCF) behavior of the IN792 was also investigated. The results show that precracking of the coating prior to the fatigue test has little influence on the fatigue limit of specimens with thin coating (50 μm) but lowers the fatigue limit of specimens with thick coating (70 μm). The through-coating crack has enough mobility to penetrate into the substrate and causes fatigue failure only when the driving force for crack propagation is increased above a critical value due to a higher applied stress or a larger crack length (thicker coating).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy