SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Doutch James J.) "

Sökning: WFRF:(Doutch James J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eves, Ben J., et al. (författare)
  • Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering
  • 2021
  • Ingår i: RSC Chemical Biology. - : Royal Society of Chemistry (RSC). - 2633-0679. ; 2:4, s. 1232-1238
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml-1 seeds in 2.5 mg ml-1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min-1, and an average seed length estimate of 4.2 ± 1.3 μm. This journal is
  •  
2.
  • Sanchez-Fernandez, Adrian, et al. (författare)
  • Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:35, s. 14158-14168
  • Tidskriftsartikel (refereegranskat)abstract
    • While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects.
  •  
3.
  • Atri, Ria S., et al. (författare)
  • Morphology Modulation of Ionic Surfactant Micelles in Ternary Deep Eutectic Solvents
  • 2020
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 124:28, s. 6004-6014
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep eutectic solvents (DES) are potentially greener solvents obtained through the complexation of simple precursors which, among other applications, have been investigated in recent years for their ability to support the self-assembly of amphiphilic molecules. It is crucial to understand the factors which influence surfactant solubility and self-assembly with respect to the interaction of the surfactant molecule with the DES components. In this work, small-angle neutron scattering (SANS) has been used to investigate the micellization of cationic (CnTAB) and anionic (SDS) surfactants in a ternary DES comprising choline chloride, urea, and glycerol, where the hydrogen bond donors are mixed in varying molar ratios. The results show that in each case either globular or rodlike micelles are formed with the degree of elongation being directly dependent on the composition of the DES. It is hypothesized that this composition dependence arises largely from the poor solubility of the counterions in the DES, especially at low glycerol content, leading to a tighter binding of the counterion to the micelle surface and giving rise to micelles with a high aspect ratio. This potential for accurate control over micelle morphology presents unique opportunities for rheology control or to develop templated syntheses of porous materials in DES, utilizing the solvent composition to tailor micelle shape and size, and hence the pore structure of the resulting material.
  •  
4.
  • Barriga, Hanna M. G., et al. (författare)
  • Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers
  • 2022
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 34:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.
  •  
5.
  • Sanchez-Fernandez, Adrian, et al. (författare)
  • Surfactant-Solvent Interaction Effects on the Micellization of Cationic Surfactants in a Carboxylic Acid-Based Deep Eutectic Solvent
  • 2017
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 33:50, s. 14304-14314
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep eutectic solvents have been demonstrated to support amphiphile self-assembly, providing potential alternatives as structure-directing agents in the synthesis of nanostructures, and drug delivery. Here we have expanded on this recent research to investigate the self-assembly of alkyltrimethylammonium bromide surfactants in choline chloride:malonic acid deep eutectic solvent and mixtures of the solvent with water. Surface tension and small-angle neutron scattering were used to determine the behavior of the amphiphiles. Surfactants were found to remain active in the solvent, and surface tension measurements revealed changes in the behavior of the surfactants with different levels of hydration. Small-angle neutron scattering shows that in this solvent the micelle shape depends on the surfactant chain length, varying from globular micelles (aspect ratio ∼2) for short chain surfactants to elongated micelles (aspect ratio ∼14) for long chain surfactants even at low surfactant concentration. We suggest that the formation of elongated micelles can be explained through the interaction of the solvent with the surfactant headgroup, since ion-ion interactions between surfactant headgroups and solvent may modify the morphology of the micelles. The presence of water in the deep eutectic solvents promotes an increase in the charge density at the micelle interface and therefore the formation of less elongated, globular micelles.
  •  
6.
  • Hammond, Oliver S., et al. (författare)
  • Evidence for an L3 phase in ternary deep eutectics : composition-induced L3-to-Lα transition of AOT
  • 2023
  • Ingår i: Nanoscale. - 2040-3364. ; 15:47, s. 19314-19321
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure and hydrated deep eutectic solvents (DES) are proposed to form self-assembled nanostructures within the fluid bulk, similar to the bicontinuous L3 phase common for ionic liquids (ILs). Labelled choline chloride : urea : water DES were measured using small-angle neutron scattering (SANS), showing no long-range nanostructure. However, solutions of the surfactant AOT in this DES yielded scattering consistent with the L3 “sponge” phase, which was fitted using the Teubner-Strey model. A disclike model gave local structural information, namely, a linear increase in radius versus solvent water content (w = molar ratio of DES : water), eventually forming large, turbid lamellar phases at 10w; an L3-to-Lα transition was observed. Simultaneous multi-contrast SANS fits show the surfactant headgroup region is dominated by interactions with poorly-soluble Na+ at low water contents, and numerically-superior [cholinium]+ as water content increases. The modified interfacial Gaussian curvature from cation : anion volume matching stabilizes the lamellar morphology, allowing the bilayer aggregation number to increase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy