SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drazdauskas A.) ;pers:(Vallenari A.)"

Sökning: WFRF:(Drazdauskas A.) > Vallenari A.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
3.
  • Cantat-Gaudin, T., et al. (författare)
  • The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations. Aims. Studying the chemical homogeneity of the most massive open clusters is needed to better understand the mechanism of their formation and determine the mass limit under which clusters cannot host multiple populations. Here we studied NGC 6705, which is a young and massive open cluster located towards the inner region of the Milky Way. This cluster is located inside the solar circle. This makes it an important tracer of the inner disk abundance gradient. Methods. This study makes use of BVI and ri photometry and comparisons with theoretical isochrones to derive the age of NGC 6705. We study the density profile of the cluster and the mass function to infer the cluster mass. Based on abundances of the chemical elements distributed in the first internal data release of the Gaia-ESO Survey, we study elemental ratios and the chemical homogeneity of the red clump stars. Radial velocities enable us to study the rotation and internal kinematics of the cluster. Results. The estimated ages range from 250 to 316 Myr, depending on the adopted stellar model. Luminosity profiles and mass functions show strong signs of mass segregation. We derive the mass of the cluster from its luminosity function and from the kinematics, finding values between 3700 M-circle dot and 11 000 M-circle dot. After selecting the cluster members from their radial velocities, we obtain a metallicity of [Fe/H] = 0.10 +/- 0.06 based on 21 candidate members. Moreover, NGC 6705 shows no sign of the typical correlations or anti-correlations between Al, Mg, Si, and Na, which are expected in multiple populations. This is consistent with our cluster mass estimate, which is lower than the required mass limit proposed in the literature to develop multiple populations.
  •  
4.
  • Casali, G., et al. (författare)
  • The Gaia-ESO survey : Calibrating a relationship between age and the [C/N] abundance ratio with open clusters
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: In the era of large high-resolution spectroscopic surveys such as Gaia-ESO and APOGEE, high-quality spectra can contribute to our understanding of the Galactic chemical evolution by providing abundances of elements that belong to the different nucleosynthesis channels, and also by providing constraints to one of the most elusive astrophysical quantities: stellar age.Aims: Some abundance ratios, such as [C/N], have been proven to be excellent indicators of stellar ages. We aim at providing an empirical relationship between stellar ages and [C/N] using open star clusters, observed by the Gaia-ESO and APOGEE surveys, as calibrators.Methods: We used stellar parameters and abundances from the Gaia-ESO Survey and APOGEE Survey of the Galactic field and open cluster stars. Ages of star clusters were retrieved from the literature sources and validated using a common set of isochrones. We used the same isochrones to determine for each age and metallicity the surface gravity at which the first dredge-up and red giant branch bump occur. We studied the effect of extra-mixing processes in our sample of giant stars, and we derived the mean [C/N] in evolved stars, including only stars without evidence of extra mixing. By combining the Gaia-ESO and APOGEE samples of open clusters, we derived a linear relationship between [C/N] and (logarithmic) cluster ages.Results: We apply our relationship to selected giant field stars in the Gaia-ESO and APOGEE surveys. We find an age separation between thin-and thick-disc stars and age trends within their populations, with an increasing age towards lower metallicity populations.Conclusions: With this empirical relationship, we are able to provide an age estimate for giant stars in which C and N abundances are measured. For giant stars, the isochrone fitting method is indeed less sensitive than for dwarf stars at the turn-off. Our method can therefore be considered as an additional tool to give an independent estimate of the age of giant stars. The uncertainties in their ages is similar to those obtained using isochrone fitting for dwarf stars.
  •  
5.
  • Hatzidimitriou, D., et al. (författare)
  • The Gaia-ESO Survey : The inner disc, intermediate-Age open cluster Pismis 18
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Pismis 18 is a moderately populated, intermediate-Age open cluster located within the solar circle at a Galactocentric distance of about seven kpc. Few open clusters have been studied in detail in the inner disc region before the Gaia-ESO Survey. Aims. New data from the Gaia-ESO Survey allowed us to conduct an extended radial velocity membership study as well as spectroscopic metallicity and detailed chemical abundance measurements for this cluster. Methods. Gaia-ESO Survey data for 142 potential members, lying on the upper main sequence and on the red clump, yielded radial velocity measurements, which, together with proper motion measurements from the Gaia Second Data Release (Gaia DR2), were used to determine the systemic velocity of the cluster and membership of individual stars. Photometry from Gaia DR2 was used to re-determine cluster parameters based on high confidence member stars only. Cluster abundance measurements of six radial-velocity member stars with UVES high-resolution spectroscopy are presented for 23 elements. Results. The average radial velocity of 26 high confidence members is-27.5 ± 2.5 (std) km s-1 with an average proper motion of pmra =-5.65 ± 0.08 (std) mas yr-1 and pmdec =-2.29 ± 0.11 (std) mas yr-1. According to the new estimates, based on high confidence members, Pismis 18 has an age of τ = 700+40-50 Myr, interstellar reddening of E(B-V) = 0.562+0.012-0.026 mag and a de-reddened distance modulus of DM0 = 11.96+0.10-0.24 mag. The median metallicity of the cluster (using the six UVES stars) is [Fe/H] = +0.23 ± 0.05 dex, with [α/Fe] = 0.07 ± 0.13 and a slight enhancement of s-and r-neutron-capture elements. Conclusions. With the present work, we fully characterized the open cluster Pismis 18. We confirmed its present location in the inner disc. We estimated a younger age than the previous literature values and we gave, for the first time, its metallicity and its detailed abundances. Its [α/Fe] and [s-process/Fe], both slightly super-solar, are in agreement with other inner-disc open clusters observed by the Gaia-ESO survey.
  •  
6.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO Survey : radial distribution of abundances in the Galactic disc from open clusters and young-field stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc
  •  
7.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey : properties of newly discovered Li-rich giants
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report 20 new lithium-rich giants discovered within the Gaia-ESO Survey, including the first Li-rich giant with an evolutionary stage confirmed by CoRoT (Convection, Rotation and planetary Transits) data. We present a detailed overview of the properties of these 20 stars. Methods. Atmospheric parameters and abundances were derived in model atmosphere analyses using medium-resolution GIRAFFE or high-resolution UVES (Ultraviolet and Visual Echelle Spectrograph) spectra. These results are part of the fifth internal data release of the Gaia-ESO Survey. The Li abundances were corrected for non-local thermodynamical equilibrium effects. Other stellar properties were investigated for additional peculiarities (the core of strong lines for signs of magnetic activity, infrared magnitudes, rotational velocities, chemical abundances, and Galactic velocities). We used Gaia DR2 parallaxes to estimate distances and luminosities. Results. The giants have A(Li) > 2.2 dex. The majority of them (14 of 20 stars) are in the CoRoT fields. Four giants are located in the field of three open clusters, but are not members. Two giants were observed in fields towards the Galactic bulge, but likely lie in the inner disc. One of the bulge field giants is super Li-rich with A(Li) = 4.0 dex. Conclusions. We identified one giant with infrared excess at 22 mu m. Two other giants, with large v sin i, might be Li-rich because of planet engulfment. Another giant is found to be barium enhanced and thus could have accreted material from a former asymptotic giant branch companion. Otherwise, in addition to the Li enrichment, the evolutionary stages are the only other connection between these new Li-rich giants. The CoRoT data confirm that one Li-rich giant is at the core-He burning stage. The other giants are concentrated in close proximity to the red giant branch luminosity bump, the core-He burning stages, or the early-asymptotic giant branch. This is very clear from the Gaia-based luminosities of the Li-rich giants. This is also seen when the CoRoT Li-rich giants are compared to a larger sample of 2252 giants observed in the CoRoT fields by the Gaia-ESO Survey, which are distributed throughout the red giant branch in the T-eff-log g diagram. These observations show that the evolutionary stage is a major factor for the Li enrichment in giants. Other processes, such as planet accretion, contribute at a smaller scale.
  •  
8.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey : The N/O abundance ratio in the Milky Way
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The abundance ratio N/O is a useful tool to study the interplay of galactic processes, for example star formation efficiency, timescale of infall, and outflow loading factor. Aims. We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare this ratio with a set of chemical evolution models to understand the role of infall, outflow, and star formation efficiency in the building up of the Galactic disc. Methods. We used the abundances from IDR2-3, IDR4, IDR5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars. We determined membership and average composition of open clusters and we separated thin and thick disc field stars. We considered the effect of mixing in the abundance of N in giant stars. We computed a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the effects of the star formation efficiency, infall timescale, and differential outflow. Results. With our samples, we map the metallicity range -0. 6 <= [Fe/H] <= 0.3 with a corresponding -1.2 <= log(N/O) <= -0.2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in different parts of the Galaxy. Conclusions. Our spatially resolved results allow us to distinguish differences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall timescale is needed in the inner regions, while the outer regions need a longer infall timescale, coupled with a higher star formation efficiency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H II regions.
  •  
9.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Survey : open clusters in Gaia-DR1 A way forward to stellar age calibration
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims. We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators.Methods. We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis.Results. For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, A&A, 601, A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values.Conclusions. The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets.
  •  
10.
  • Tautvaisiene, G., et al. (författare)
  • The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey will observe a large sample of clusters and cluster stars, covering a wide age-distance-metallicity-position-density parameter space. Aims. We aim to determine C, N, and O abundances in stars of Galactic open clusters of the Gaia-ESO survey and to compare the observed abundances with those predicted by current stellar and Galactic evolution models. In this pilot paper, we investigate the first three intermediate-age open clusters. Methods. High-resolution spectra, observed with the FLAMES-UVES spectrograph on the ESO VLT, were analysed using a differential model atmosphere method. Abundances of carbon were derived using the C-2 band heads at 5135 and 5635.5 angstrom. The wavelength interval 6470-6490 angstrom, with CN features, was analysed to determine nitrogen abundances. Oxygen abundances were determined from the [O I] line at 6300 angstrom. Results. The mean values of the elemental abundances in Trumpler 20 as determined from 42 stars are: [Fe/H] = 0.10 +/- 0.08 (s.d.), [C/H] = -0.10 +/- 0.07, [N/H] = 0.50 +/- 0.07, and consequently C = N = 0.98 +/- 0.12. We measure from five giants in NGC4815: [Fe/H] = 0.01 +/- 0.04, [C/H] = -0.17 +/- 0.08, [N/H] = 0.53 +/- 0.07, [O/H] = 0.12 +/- 0.09, and C/N = 0.79 +/- 0.08. We obtain from 27 giants in NGC6705: [Fe/H] = 0.0 +/- 0.05, [C/H] = 0.08 +/- 0.06, [N/H] = 0.61 +/- 0.07, [O/H] = 0.13 +/- 0.05, and C/N = 0.83 +/- 0.19. The C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolutionary models. For the corresponding stellar turn-off masses from 1.9 to 3.3 M-circle dot, the observed C/N ratio values are very close to the predictions of standard first dredge-up models as well as to models of thermohaline extra-mixing. They are not decreased as much as predicted by the recent model in which the thermohaline-and rotation-induced extra-mixing act together. The average [O/H] abundance ratios of NGC4815 and NGC6705 are compared with the predictions of two Galactic chemical evolution models. The data are consistent with the evolution at the solar radius within the errors. Conclusions. The first results of CNO determinations in open clusters show the potential of the Gaia-ESO Survey to judge stellar and Galactic chemical evolution models and the validity of their physical assumptions through a homogeneous and detailed spectral analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy