SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duijts Liesbeth) ;lar1:(ki)"

Sökning: WFRF:(Duijts Liesbeth) > Karolinska Institutet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Melen, Erik, et al. (författare)
  • Spirometric phenotypes from early childhood to young adulthood - A CADSET (Chronic Airway Disease Early Stratification) study
  • 2020
  • Ingår i: European Respiratory Journal. - : ERS Publications. - 0903-1936 .- 1399-3003. ; 56:Suppl 64
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Results from longitudinal cohort studies show that the lower the lung function in childhood and adulthood, the higher the risk of later chronic airway disease such as COPD. Yet, reliable data is sparse on the prevalence of different types of lung function impairments in the general population of children and young adults, as well as their major determinants.Aim: To report age- and sex-specific prevalences and characteristics of spirometric phenotypes from childhood up to young adulthood.Methods: Lung function data from independent European population-based cohorts involved in the CADSET collaboration were analysed. Pre-bronchodilator FEV1 and FVC data from each cohort were converted into z-scores according to the Global Lung Initiative (GLI) reference system. Overall fit with the GLI spirometry equations was assessed. Airway limitation was defined as a FEV1/FVC z-score < -1.65.Results: Five cohorts provided spirometry data from 10,842 observations in subjects aged 7 to 25 years. Airway limitation was found in around 6-10% across all ages in the cohorts. No evidence of differences between males and females in different age groups were observed. In unadjusted analyses of all cohorts, we found maternal smoking during pregnancy to be associated with airway limitation (p<0.05).Conclusion: Analyses of spirometry data from population-based cohorts in Europe show that the prevalence of airflow limitation according to GLI is substantial (6-10%) and quite similar across cohorts and age groups. These results suggest that airflow limitation can develop early in life and that there are rather small changes in prevalence during childhood.
  •  
2.
  • Merid, Simon Kebede, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age
  • 2020
  • Ingår i: Genome Medicine. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 1756-994X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
  •  
3.
  • van Meel, Evelien R., et al. (författare)
  • Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children
  • 2022
  • Ingår i: European Respiratory Journal. - : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 60:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. Methods We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, forced expiratory flow at 75% of FVC (FEF75%) and asthma at a median (range) age of 7 (4-15) years. Results Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV1, FEV1/FVC and FEF75% (z-score range: -0.09 (95% CI -0.14- -0.04) to -0.30 (95% CI -0.36- -0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma. Conclusions Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.
  •  
4.
  • Wang, Gang, et al. (författare)
  • Spirometric phenotypes from early childhood to young adulthood : a Chronic Airway Disease Early Stratification study
  • 2021
  • Ingår i: ERJ Open Research. - : ERS Publications. - 2312-0541. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts.Methods: We studied 49334 participants from 14 population-based cohorts in different age groups (⩽10, >10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ⩾LLN, and FVC z-score Results: The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46).Conclusion: Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy