SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dunning Alison M.) srt2:(2005-2009);conttype:(refereed)"

Sökning: WFRF:(Dunning Alison M.) > (2005-2009) > Refereegranskat

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uitterlinden, André G, et al. (författare)
  • The association between common vitamin D receptor gene variations and osteoporosis : a participant-level meta-analysis
  • 2006
  • Ingår i: Annals of Internal Medicine. - 0003-4819. ; 145:4, s. 255-264
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Polymorphisms of the vitamin D receptor (VDR) gene have been implicated in the genetic regulation of bone mineral density (BMD). However, the clinical impact of these variants remains unclear.OBJECTIVE: To evaluate the relation between VDR polymorphisms, BMD, and fractures.DESIGN: Prospective multicenter large-scale association study.SETTING: The Genetic Markers for Osteoporosis consortium, involving 9 European research teams.PARTICIPANTS: 26,242 participants (18,405 women).MEASUREMENTS: Cdx2 promoter, FokI, BsmI, ApaI, and TaqI polymorphisms; BMD at the femoral neck and the lumbar spine by dual x-ray absorptiometry; and fractures.RESULTS: Comparisons of BMD at the lumbar spine and femoral neck showed nonsignificant differences less than 0.011 g/cm2 for any genotype with or without adjustments. A total of 6067 participants reported a history of fracture, and 2088 had vertebral fractures. For all VDR alleles, odds ratios for fractures were very close to 1.00 (range, 0.98 to 1.02) and collectively the 95% CIs ranged from 0.94 (lowest) to 1.07 (highest). For vertebral fractures, we observed a 9% (95% CI, 0% to 18%; P = 0.039) risk reduction for the Cdx2 A-allele (13% risk reduction in a dominant model).LIMITATIONS: The authors analyzed only selected VDR polymorphisms. Heterogeneity was detected in some analyses and may reflect some differences in collection of fracture data across cohorts. Not all fractures were related to osteoporosis.CONCLUSIONS: The FokI, BsmI, ApaI, and TaqI VDR polymorphisms are not associated with BMD or with fractures, but the Cdx2 polymorphism may be associated with risk for vertebral fractures.
  •  
2.
  • Schmidt, Marjanka K, et al. (författare)
  • Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium
  • 2007
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 67:19, s. 9584-9590
  • Tidskriftsartikel (refereegranskat)abstract
    • Association studies in large series of breast cancer patients can be used to identify single-nucleotide polymorphisms (SNP) contributing to breast cancer susceptibility. Previous studies have suggested associations between variants in TP53 (R72P) and MDM2 (SNP309) and cancer risk. Data from molecular studies suggest a functional interaction between these genes. We therefore investigated the effect of TP53 R72P and MDM2 SNP309 on breast cancer risk and age at onset of breast cancer in a pooled series of 5,191 cases and 3,834 controls from the Breast Cancer Association Consortium (BCAC). Breast cancer risk was not found to be associated with the combined variant alleles [odds ratio (OR), 1.00; 95% confidence interval (95% CI), 0.81–1.23]. Estimated ORs were 1.01 (95% CI, 0.93–1.09) per MDM2 SNP309 allele and 0.98 (95% CI, 0.91–1.04) for TP53 R72P. Although we did find evidence for a 4-year earlier age at onset for carriers of both variant alleles in one of the breast cancer patient series of the BCAC (the German series), we were not able to confirm this effect in the pooled analysis. Even so, carriers of both variant alleles did not have different risk estimates for bilateral or estrogen receptor–positive breast cancer. In conclusion, in this large collaborative study, we did not find an association of MDM2 SNP309 and TP53 R72P, separately or in interaction, with breast cancer. This suggests that any effect of these two variants would be very small and possibly confined to subgroups that were not assessed in our present study.
  •  
3.
  • Garcia-Closas, Montserrat, et al. (författare)
  • Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
  • 2008
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 4:4, s. e1000054-
  • Tidskriftsartikel (refereegranskat)abstract
    • A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  •  
4.
  •  
5.
  •  
6.
  • Cox, Angela, et al. (författare)
  • A common coding variant in CASP8 is associated with breast cancer risk
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 352-358
  • Tidskriftsartikel (refereegranskat)abstract
    • The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 -202 C --> A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3' UTR A --> G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9-15 studies, comprising 11,391-18,290 cases and 14,753-22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85-0.94) and 0.74 (95% c.i.: 0.62-0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; P(trend) = 1.1 x 10(-7)) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02-1.13) and 1.16 (95% c.i.: 1.08-1.25), respectively; P(trend) = 2.8 x 10(-5)). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.
  •  
7.
  •  
8.
  • Neasham, David, et al. (författare)
  • Double-strand break DNA repair genotype predictive of later mortality and cancer incidence in a cohort of non-smokers
  • 2009
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7856 .- 1568-7864. ; 8:1, s. 60-71
  • Tidskriftsartikel (refereegranskat)abstract
    • We followed-up for mortality and cancer incidence 1088 healthy non-smokers from a population-based study, who were characterized for 22 variants in 16 genes involved in DNA repair pathways. Follow-up was 100% complete. The association between polymorphism and mortality or cancer incidence was analyzed using Cox Proportional Hazard regression models. Ninety-five subjects had died in a median follow-up time of 78 months (inter-quartile range 59-93 months). None of the genotypes was clearly associated with total mortality, except variants for two Double-Strand Break DNA repair genes, XRCC3 18067 C > T (rs#861539) and XRCC2 31479 G > A (rs#3218536). Adjusted hazard ratios were 2.25 (1.32-3.83) for the XRCC3 C/T genotype and 2.04 (1.00-4.13) for the T/T genotype (reference C/C), and 2.12 (1.14-3.97) for the XRCC2 G/A genotype (reference G/G). For total cancer mortality, the adjusted hazard ratios were 3.29 (1.23-7.82) for XRCC3 C/T, 2.84 (0.81-9.90) for XRCC3 T/T and 3.17 (1.21-8.30) for XRCC2 G/A. With combinations of three or more adverse alleles, the adjusted hazard ratio for all cause mortality was 17.29 (95% C.I. 8.13-36.74), and for all incident cancers the HR was 5.28 (95% C.I. 2.17-12.85). Observations from this prospective study suggest that polymorphisms of genes involved in the repair of DNA double-strand breaks significantly influence the risk of cancer and non-cancer disease, and call influence mortality. (C) 2008 Elsevier B.V. All rights reserved.
  •  
9.
  • Travis, Ruth C., et al. (författare)
  • CYP19A1 Genetic Variation in Relation to Prostate Cancer Risk and Circulating Sex Hormone Concentrations in Men from the Breast and Prostate Cancer Cohort Consortium
  • 2009
  • Ingår i: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 18:10, s. 2734-2744
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormones, particularly the androgens, are important for the growth of the prostate gland and have been implicated in prostate cancer carcinogenesis, yet the determinants of endogenous steroid hormone levels remain poorly understood. Twin studies suggest a heritable component for circulating concentrations of sex hormones, although epidemiologic evidence linking steroid hormone gene variants to prostate cancer is limited. Here we report on findings from a comprehensive study of genetic variation at the CYP19A1 locus in relation to prostate cancer risk and to circulating steroid hormone concentrations in men by the Breast and Prostate Cancer Cohort Consortium (BPC3), a large collaborative prospective study. The BPC3 systematically characterized variation in CYP19A1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nuclecitide polymorphisms (htSNP) that efficiently predict common variants in U.S. and Europe-an whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs; in 8,166 prostate cancer cases and 9,079 study-, age-, and ethnicity-matched controls. CYP19A1 htSNPs, two common missense variants and common haplotypes were not significantly associated with risk of prostate cancer. However, several htSNPs in linkage disequilibrium blocks 3 and 4 were significantly associated with a 5% to 10% difference in estradiol concentrations in men [association per copy of the two-SNP haplotype rs749292-rs727479 (A-A) versus noncarriers; P = 1 x 10(-5)], and with inverse, although less marked changes, in free testosterone concentrations. These results suggest that although germline variation in CYP19A1 characterized by the htSNPs produces measurable differences in sex hormone concentrations in men, they do not substantially influence risk of prostate cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(10):2734-44)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy