SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dzysiuk Natalia) "

Sökning: WFRF:(Dzysiuk Natalia)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angioni, C., et al. (författare)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
2.
  • Arnichand, H., et al. (författare)
  • Discriminating the trapped electron modes contribution in density fluctuation spectra
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.
  •  
3.
  • Baiocchi, B., et al. (författare)
  • Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.
  •  
4.
  • Bolshakova, I., et al. (författare)
  • Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper deals with radiation resistant sensors and their associated measuring instrumentation developed in the course of R and D activities carried out in the framework of an international collaboration. The first trial tests of three-dimensional (3D) probes with Hall sensors have been performed in European tokamaks TORE SUPRA (2004) and JET (2005). Later in 2009 six sets of 3D probes were installed in JET and now continue to operate. The statistical analysis performed in 2014 on the basis of the JET database have demonstrated stable long term operation of all 18 sensors of 3D probes. The results of measurements conducted at the neutron fluxes of nuclear reactors have demonstrated the operability of the sensors up to high neutron fluences of F > 10(18)n , cm(-2) that exceeds the maximum one for the locations of steady state sensors in ITER over its total lifetime.
  •  
5.
  • Bonelli, F., et al. (författare)
  • Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.
  •  
6.
  • Bourdelle, C., et al. (författare)
  • L to H mode transition : parametric dependencies of the temperature threshold
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T-th). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T-th are tested versus magnetic field, density, effective charge. Various robust experimental observations are reproduced, in particular T-th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.
  •  
7.
  • Bourdelle, C., et al. (författare)
  • WEST Physics Basis
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:6
  • Tidskriftsartikel (refereegranskat)abstract
    • With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.
  •  
8.
  • Brezinsek, S., et al. (författare)
  • Beryllium migration in JET ITER-like wall plasmas
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:6
  • Tidskriftsartikel (refereegranskat)abstract
    • JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (E-in = 35 eV) and more than 100%, caused by Be self-sputtering (E-in = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at E-in = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of magnitude. Within the divertor, Be performs far fewer re-erosion and transport steps than C due to an energetic threshold for Be sputtering, and inhibits as a result of this the transport to the divertor floor and the pump duct entrance. The target plates in the JET-ILW inner divertor represent at the strike line a permanent net erosion zone, in contrast to the net deposition zone in JET-C with thick carbon deposits on the CFC (carbon-fibre composite) plates. The Be migration identified is consistent with the observed low long-term fuel retention and dust production with the JET-ILW.
  •  
9.
  • Challis, C. D., et al. (författare)
  • Improved confinement in JET high beta plasmas with an ITER-like wall
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 55:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes. It was found that the power degradation of thermal energy confinement was weak with the ILW; much weaker than the IPB98(y,2) scaling and resulting in an increase in normalized confinement from H-98 similar to 0.9 at beta(N) similar to 1.5 to H-98 similar to 1.2 - 1.3 at beta(N) similar to 2.5 - 3.0 as the power was increased (where H-98 = tau(E)/tau(IPB98(y, 2)) and beta(N) = beta B-T(T)/aI(P) in %T/mMA). This reproduces the general trend in JET of higher normalized confinement in the so-called 'hybrid' domain, where normalized beta is typically above 2.5, compared with 'baseline' ELMy H-mode plasmas with beta(N) similar to 1.5-2.0. This weak power degradation of confinement, which was also seen with the C-wall experiments at low triangularity, is due to both increased edge pedestal pressure and core pressure peaking at high power. By contrast, the high triangularity C-wall plasmas exhibited elevated H-98 over a wide power range with strong, IPB98(y,2)-like, power degradation. This strong power degradation of confinement appears to be linked to an increase in the source of neutral particles from the wall as the power increased, an effect that was not reproduced with the ILW. The reason for the loss of improved confinement domain at low power with the ILW is yet to be clarified, but contributing factors may include changes in the rate of gas injection, wall recycling, plasma composition and radiation. The results presented in this paper show that the choice of wall materials can strongly affect plasma performance, even changing confinement scalings that are relied upon for extrapolation to future devices.
  •  
10.
  • Chankin, A. V., et al. (författare)
  • Influence of the E X B drift in high recycling divertors on target asymmetries
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed analysis of convective fluxes caused by E x B drifts is carried out in a realistic JET configuration, based on a series of EDGE2D-EIRENE runs. The EDGE2D-EIRENE code includes all guiding centre drifts, E x B as well as. B and centrifugal drifts. Particle sources created by divergences of radial and poloidal components of the E x B drift are separately calculated for each flux tube in the divertor. It is demonstrated that in high recycling divertor conditions radial E x B drift creates particle sources in the common flux region (CFR) consistent with experimentally measured divertor and target asymmetries, with the poloidal E x B drift creating sources of an opposite sign but smaller in absolute value. That is, the experimentally observed asymmetries in the CFR are the opposite to what poloidal E x B drift by itself would cause. In the private flux region (PFR), the situation is reversed, with poloidal E x B drift being dominant. In this region poloidal E x B drift by itself contributes to experimentally observed asymmetries. Thus, in each region, the dominant component of the E x B drift acts so as to create the density (and hence, also temperature) asymmetries that are observed both in experiment and in 2D edge fluid codes. Since the total number of charged particles is much greater in the CFR than in PFR, divertor asymmetries caused by the E x B drift should be attributed primarily to particle sources in the CFR caused by radial E x B drift.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy