SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;conttype:(refereed)"

Sökning: WFRF:(Ehrlén Johan) > Refereegranskat

  • Resultat 1-10 av 143
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvanitis, Leena, et al. (författare)
  • Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference.
  • 2010
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 13:3, s. 330-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization is an important mechanism for sympatric speciation in plants. Still, we know little about whether plant polyploidization leads to insect host shifts, and if novel interactions influence habitat and trait selection in plants. We investigated herbivory by the flower bud gall-forming midge Dasineura cardaminis on tetraploids and octoploids of the herb Cardamine pratensis. Gall midges attacked only octoploid plant populations, and a transplantation experiment confirmed this preference. Attack rates were higher in populations that were shaded, highly connected or occurred along stream margins. Within populations, late-flowering individuals with many flowers were most attacked. Galling reduced seed production and significantly influenced phenotypic selection on flower number. Our results suggest that an increase in ploidy may lead to insect host shifts and that plant ploidy explains insect host use. In newly formed plant polyploids, novel interactions may alter habitat preferences and trait selection, and influence the further evolution of cytotypes.
  •  
2.
  • Christiansen, Ditte M., 1990-, et al. (författare)
  • High-resolution data are necessary to understand the effects of climate on plant population dynamics of a forest herb
  • 2024
  • Ingår i: Ecology. - 0012-9658 .- 1939-9170. ; 105:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions. 
  •  
3.
  • Dahlberg, C. Johan, et al. (författare)
  • Correlations between plant climate optima across different spatial scales
  • 2020
  • Ingår i: Environmental and Experimental Botany. - : Elsevier BV. - 0098-8472 .- 1873-7307. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the factors determining the abundance and distribution of species is a fundamental question in ecology. One key issue is how similar the factors determining species' distributions across spatial scales are (here we focus especially on spatial extents). If the factors are similar across extents, then the large scale distribution pattern of a species may provide information about its local habitat requirements, and vice versa. We assessed the relationships between landscape and national optima as well as landscape and continental optima for growing degree days, maximum temperature and minimum temperature for 96 bryophytes and 50 vascular plants. For this set of species, we derived landscape optima from abundance weighted temperature data using species inventories in central Sweden and a fine-grained temperature model (50 m), national optima from niche centroid modelling based on GBIF data from Sweden and the same fine-grained climate model, and continental optima using the same method as for the national optima but from GBIF data from Europe and Worldclim temperatures (c. 1000 m). The landscape optima of all species were positively correlated with national as well as continental optima for maximum temperature (r = 0.45 and 0.46, respectively), weakly so for growing degree days (r = 0.30 and r = 0.28), but sometimes absent for minimum temperature (r = 0.26 and r = 0.04). The regression slopes of national or continental optima on local optima did not differ between vascular plants and bryophytes for GDD and Tmax. However, the relationship between the optima of Tmin differed between groups, being positive in vascular plants but absent in bryophytes. Our results suggest that positive correlations between optima at different spatial scales are present for some climatic variables but not for others. Moreover, our results for vascular plants and bryophytes suggest that correlations might differ between organism groups and depend on the ecology of the focal organisms. This implies that it is not possible to routinely up- or downscale distribution patterns based on environmental correlations, since drivers of distribution patterns might differ across spatial extents.
  •  
4.
  • Dahlberg, C. Johan, 1978-, et al. (författare)
  • Performance of Forest Bryophytes with Different Geographical Distributions Transplanted across a Topographically Heterogeneous Landscape
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Most species distribution models assume a close link between climatic conditions and species distributions. Yet, we know little about the link between species’ geographical distributions and the sensitivity of performance to local environmental factors. We studied the performance of three bryophyte species transplanted at south- and north-facing slopes in a boreal forest landscape in Sweden. At the same sites, we measured both air and ground temperature. We hypothesized that the two southerly distributed species Eurhynchium angustirete and Herzogiella seligeri perform better on south-facing slopes and in warm conditions, and that the northerly distributed species Barbilophozia lycopodioides perform better on north-facing slopes and in relatively cool conditions. The northern, but not the two southern species, showed the predicted relationship with slope aspect. However, the performance of one of the two southern species was still enhanced by warm temperatures. An important reason for the inconsistent results can be that microclimatic gradients across landscapes are complex and influenced by many climate-forcing factors. Therefore, comparing only north- and south-facing slopes might not capture the complexity of microclimatic gradients. Population growth rates and potential distributions are the integrated results of all vital rates. Still, the study of selected vital rates constitutes an important first step to understand the relationship between population growth rates and geographical distributions and is essential to better predict how climate change influences species distributions.
  •  
5.
  • Dahlgren, Johan, et al. (författare)
  • Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb
  • 2011
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 120:8, s. 1183-1190
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite seemingly obvious effects of environmental drivers, mechanisms behind long-term changes in plant population sizes over time are often poorly known. We investigated how soil potassium concentration and seed predation are likely to change over time as a result of succession from deciduous forest to spruce forest, and how this affects population trajectories of Actaea spicata. Observations and addition experiments showed that high soil potassium concentration increased individual growth rates. Among-site comparisons showed that soil potassium concentration was lower where proportion spruce was higher. Incorporation of a gradual increase in spruce over time in an integral projection model where individual growth depended on potassium suggested a net decrease in A. spicata population sizes over forest succession. This result suggests that small changes in factors with small effects on individual performance can influence patterns of species occupancy along successional gradients. We incorporated also density independent and density dependent effects of pre-dispersal seed predation over succession into the same model. Seed predation influenced the tree composition at which A. spicata population growth was positive. However, significant effects of A. spicata population size on seed predation intensity did not translate into important feedback effects on population growth trajectories over succession. Our results illustrate how demographic models can be used to gain understanding of the mechanisms behind effects of environmental change on species abundances and distributions by the simultaneous inclusion of changing abiotic and biotic factors.
  •  
6.
  • Dahlgren, Johan, et al. (författare)
  • Linking environmental variation to population dynamics of a forest herb
  • 2009
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 97:4, s. 666-674
  • Tidskriftsartikel (refereegranskat)abstract
    • . Although necessary for understanding and predicting population dynamics, abiotic and biotic interactions have only rarely been coupled to demography and population dynamics. 2. We estimated effects of 11 environmental factors on survival, growth and fertility of the perennial herb Actaea spicata and incorporated significant factors into integral projection models to assess their effect on population dynamics. 3. Statistical models suggested that high soil potassium concentration increased individual growth and that seed predation and, to a lesser extent, canopy cover reduced seed production. 4. Demographic models showed that both soil potassium concentration and pre-dispersal seed predation could reverse population growth from positive to negative. The observed range of soil potassium concentration corresponded to growth rates (lambda) between 0.96 and 1.07, at mean observed seed predation intensity. At observed mean potassium concentration, growth rate ranged from 0.99 to 1.02 over observed seed predation intensities. 5. Sensitivity of population growth rate to different vital rates strongly influenced the relative effects of the two factors. Elasticity analysis suggested that proportional changes in soil potassium concentration result in seven times larger effects on population growth rate than changes in seed predation. 6. Synthesis. We conclude that relatively weak associations between environmental factors and vital rates can have substantial long-term effects on population growth. Approaches based on detailed demographic models, that simultaneously assess abiotic and biotic effects on population growth rate, constitute important tools for establishing the links between the environment and dynamics of populations and communities.
  •  
7.
  • Dahlgren, Johan P., et al. (författare)
  • Local environment and density-dependent feedbacks determine population growth in a forest herb
  • 2014
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 176:4, s. 1023-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots that were less shaded by the tree canopy, indicating an environmentally determined carrying capacity. A size-structured integral projection model based on the vital rate regressions revealed that the identified effects of shade and density were strong enough to produce differences in stable population sizes similar to those observed in the field. The results illustrate how the local environment can determine dynamics of populations and that intraspecific density may have to be more carefully considered in studies of plant demography and population viability analyses of threatened species. We conclude that demographic approaches incorporating information about both density and key environmental factors are powerful tools for understanding the processes that interact to determine population dynamics and abundances.
  •  
8.
  • Dahlgren, Johan P., et al. (författare)
  • Nonlinear relationships between vital rates and state variables in demographic models
  • 2011
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 92:5, s. 1181-1187
  • Tidskriftsartikel (refereegranskat)abstract
    • To accurately estimate population dynamics and viability, structured population models account for among-individual differences in demographic parameters that are related to individual state. In the widely used matrix models, such differences are incorporated in terms of discrete state categories, whereas integral projection models (IPMs) use continuous state variables to avoid artificial classes. In IPMs, and sometimes also in matrix models, parameterization is based on regressions that do not always model nonlinear relationships between demographic parameters and state variables. We stress the importance of testing for nonlinearity and propose using restricted cubic splines in order to allow for a wide variety of relationships in regressions and demographic models. For the plant Borderea pyrenaica, we found that vital rate relationships with size and age were nonlinear and that the parameterization method had large effects on predicted population growth rates, lambda (linear IPM, 0.95; nonlinear IPMs, 1.00; matrix model, 0.96). Our results suggest that restricted cubic spline models are more reliable than linear or polynomial models. Because even weak nonlinearity in relationships between vital rates and state variables can have large effects on model predictions, we suggest that restricted cubic regression splines should be considered for parameterizing models of population dynamics whenever linearity cannot be assumed.
  •  
9.
  •  
10.
  • Dahlgren, Johan P., et al. (författare)
  • The demography of climate-driven and density-regulated population dynamics in a perennial plant
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:4, s. 899-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 143
Typ av publikation
tidskriftsartikel (139)
forskningsöversikt (2)
proceedings (redaktörskap) (1)
bokkapitel (1)
Typ av innehåll
Författare/redaktör
Ehrlén, Johan (125)
Dahlgren, Johan P (19)
Ehrlén, Johan, 1956- (18)
Wiklund, Christer (17)
Hylander, Kristoffer (16)
Ågren, Jon (14)
visa fler...
Tack, Ayco J. M. (9)
Gotthard, Karl (8)
Lehtilä, Kari (8)
Garcia, Maria B. (8)
Posledovich, Diana (8)
Valdés, Alicia (7)
Toftegaard, Tenna (7)
Meineri, Eric (6)
Toräng, Per (6)
Eriksson, Ove (6)
Crone, Elizabeth E. (6)
Morris, William F. (5)
Hedenäs, Lars (5)
Arvanitis, Leena (5)
Marteinsdottir, Bryn ... (5)
van Dijk, Laura J. A ... (5)
Bisang, Irene (5)
Luoto, Miska (4)
Hambäck, Peter A. (4)
Merinero, Sonia (4)
Ramula, Satu (4)
Münzbergova, Zuzana (4)
Knight, Tiffany M. (4)
Buckley, Yvonne M. (4)
Wardle, Glenda M. (4)
Dahlgren, Johan (4)
Greiser, Caroline (4)
Syrjänen, Kimmo (4)
Leimu, Roosa (4)
Valdés, Alicia, 1982 ... (4)
Mildén, Mikael (4)
König, Malin A. E. (4)
Navarro-Cano, Jose A ... (4)
Kolb, Annette (3)
Östergård, Hannah (3)
Jones, Owen R. (3)
Salguero-Gómez, Robe ... (3)
Quintana-Ascencio, P ... (3)
Menges, Eric S. (3)
Fogelström, Elsa (3)
Garcia, Maria Begona (3)
Helmutsdóttir, Vigdí ... (3)
Rasmussen, Pil, U. (3)
Villellas, Jesus (3)
visa färre...
Lärosäte
Stockholms universitet (125)
Uppsala universitet (27)
Södertörns högskola (9)
Sveriges Lantbruksuniversitet (6)
Naturhistoriska riksmuseet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Umeå universitet (1)
Högskolan i Gävle (1)
visa färre...
Språk
Engelska (139)
Odefinierat språk (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (121)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy