SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;conttype:(scientificother)"

Sökning: WFRF:(Ehrlén Johan) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dahlberg, C. Johan, 1978-, et al. (författare)
  • Plant landscape climatic optima correlate with their continental range optima
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Aim Factors determining species’ distributions at smaller scales may inform us about larger scale distributions, and vice versa. We predicted that landscape and continental climatic optima for plants are positively correlated, and that species that have their optima outside a given focal landscape will cluster at the warmest or coldest landscape patches. Also, we predicted that the correlations of temperature optima are stronger for vascular plants than for bryophytes, since bryophytes may be regulated also by air moisture.LocationÅngermanland, Sweden (landscape scale); Europe (continental scale).MethodsWe derived landscape optima from fine-grained temperature models (50 m) and species inventories, and continental optima from MaxEnt niche modelling based on GBIF occurrences and Worldclim temperatures (c. 1000 m), for 96 bryophytes and 50 vascular plants. Optima were derived for growing degree days, and maximum and minimum temperature.ResultsThe landscape and continental optima of all species were positively correlated for growing degree days and maximum temperature (r = 0.19 and r = 0.44), but not for minimum temperature (r = -0.010). Species with their continental optima outside the focal landscape did not clearly cluster in the most extreme parts of the landscape. For vascular plants the correlation was positive for both growing degree days and maximum temperature (r = 0.50 and r = 0.64), but for bryophytes only for maximum temperature (r = 0.34).Main conclusionsThe optima correlations for maximum temperature and growing degree days indicate that we can infer large scale distribution patterns of plants from their local scale distributions, and suggest in which environments species occur if we only know their continental scale optima. The lack of clustering of southern and northern species limits the possibility for conservation actions targeting microrefugia. Lastly, the correlations indicate that the distributions of vascular plants were more influenced by temperature than bryophytes.
  •  
3.
  • Dahlberg, C. Johan, 1978-, et al. (författare)
  • Population dynamics of moss transplants across microclimatic gradients
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In order to determine the response of a species to climatic change it is important to study how climatic factors influence its vital rates and population growth rate across climatic gradients. We investigated how microclimate influence the population dynamics of transplants from northern and more southern populations of the forest bryophyte Hylocomiastrum umbratum. We predicted that its population growth rate is favored by moist microclimates with colder maximum temperatures, longer snow cover duration and less evaporation, and that annual shoots (segments) will be shorter under drier conditions. We also predicted that northern populations will have higher population growth rate and larger segments than southern populations when transplanted to the northern range. We placed transplants from three northern and three southern populations of H. umbratum at 30 forested sites in central Sweden differing in microclimate. We marked and followed the growth of individual shoots during two years, and calculated population growth rates and stable stage distributions of segment size classes using transition matrix models for northern and southern transplants, respectively, at each locality. Population growth rate was lower and shorter segments developed at sites with higher evaporation, corresponding to our hypothesis. There were no significant difference in population growth rate and stable stage segment length between southern and northern populations. Higher evaporation during the summer result in lower population growth rates of H. umbratum by affecting vital rates, in terms of less segment growth. Both climate change and forestry may alter evaporation conditions across the landscape and, thus, the future distribution of the species.
  •  
4.
  • Dahlberg, C. Johan, 1978- (författare)
  • The role of microclimate for the performance and distribution of forest plants
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Microclimatic gradients may have large influence on individual vital rates and population growth rates of species, and limit their distributions. Therefore, I focused on the influence of microclimate on individual performance and distribution of species. Further, I examined differences in how microclimate affect species with contrasting distributions or different ecophysiological traits, and populations within species. More specifically, I investigated the performance of northern and southern distributed forest bryophytes that were transplanted across microclimatic gradients, and the timing of vegetative and reproductive development among northern, marginal and more southern populations of a forest herb in a common garden. Also, I compared the landscape and continental distributions across forest bryophytes and vascular plants and, thus, their distribution limiting factors at different spatial scales. Lastly, I examined the population dynamics across microclimatic gradients of transplants from northern and southern populations of a forest moss. The effects of microclimatic conditions on performance differed among bryophytes with contrasting distributions. There were no clear differences between northern and southern populations in the timing of development of a forest herb or in the population dynamics of a moss. However, within each region there was a differentiation of the forest herb populations, related to variation in local climatic conditions and in the south also to proportion of deciduous trees. The continental distributions of species were reflected in their landscape distributions and vice versa, in terms of their occurrence optima for climatic variables. The variation in landscape climatic optima was, however, larger than predicted, which limit the precision for predictions of microrefugia. Probably, the distributions of vascular plants were more affected by temperature than the distributions of bryophytes. Bryophytes are sensitive to moisture conditions, which was demonstrated by a correlation between evaporation and the population growth rate of a forest moss. We might be able to predict species’ landscape scale distributions by linking microclimatic conditions to their population growth rates, via their vital rates, and infer larger scale distribution patterns.
  •  
5.
  •  
6.
  •  
7.
  • Dahlgren, Johan Petter, 1978- (författare)
  • Linking plant population dynamics to the local environment and forest succession
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Linking environmental variation to population dynamics is necessary to understand and predict how the environment influences species abundances and distributions. I used demographic, environmental and trait data of forest herbs to study effects of spatial variation in environmental factors on populations as well as environmental change in terms of effects of forest succession on field layer plants. The results show that abundances of field layer species during forest succession are correlated with their functional traits; species with high specific leaf area increased more in abundance. I also found that soil nutrients affect vegetative and flowering phenology of the forest herb Actaea spicata. The effect of nutrients shows that a wider range of environmental factors than usually assumed can influence plant phenology. Moreover, local environmental factors affected also the demography of A. spicata through effects on vital rates. An abiotic factor, soil potassium affecting individual growth rate, was more important for population growth rate than seed predation, the most conspicuous biotic interaction in this system. Density independent changes in soil potassium during forest succession, and to a lesser extent plant population size dependent seed predation, were predicted to alter population growth rate, and thereby the abundance, of A. spicata over time. Because these environmental factors had effects on population projections, they can potentially influence the occupancy pattern of this species along successional gradients. I conclude that including deterministic, as opposed to stochastic, environmental change in demographic models enables assessments of the effects of processes such as succession, altered land-use, and climate change on population dynamics. Models explicitly incorporating environmental factors are useful for studying population dynamics in a realistic context, and to guide management of threatened species in changing environments.
  •  
8.
  •  
9.
  • Fogelström, Elsa, 1986- (författare)
  • Plant phenology in seasonal environments
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Phenology, or the seasonal timing life-history events such as emergence, reproduction and senescence will determine the outcome of interactions between plants and both abiotic and biotic aspects of the environment. Such timing is therefore of utmost importance for plants in seasonal environments. In this thesis, I first investigated the factors determining the start, end and length of the growing season for a perennial herb. Secondly, I estimated phenotypic selection on flowering time and investigated to which extent it corresponded to genotypic selection in a natural field setting. Thirdly, I estimated population differentiation in flowering time in a common garden and in the field. Lastly, I experimentally manipulated the synchrony of a perennial herb and its main herbivore to investigate the effects of herbivore phenological preference and plant-herbivore synchrony on the direction of selection on flowering time.I found that flowering individuals emerged earlier in spring than non-flowering individuals and that large individuals senesced later in autumn, suggesting that the length of the growing season is linked to individual condition and resource demands. Phenotypic selection favoured early-flowering individuals, but there was no genotypic selection. I found evidence for genetic population differentiation in flowering time in a common garden but not in the field. This suggests that, although flowering time has a genetic component, the observed variation in flowering time was mainly plastic under natural field conditions. Lastly, I show that constant herbivore preferences of plant phenology, in combination with environmentally driven variation in relative synchrony of the plant and the herbivore, leads to among-year variation in natural selection on flowering time. With this thesis, I contribute to identifying the factors affecting plant phenology as well as of the mechanisms shaping selection on flowering time in perennial plants. Such knowledge is essential for predicting species responses to climate change.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
annan publikation (39)
doktorsavhandling (30)
Typ av innehåll
Författare/redaktör
Ehrlén, Johan (45)
Ehrlén, Johan, Profe ... (18)
Ågren, Jon (13)
Wiklund, Christer (7)
Hylander, Kristoffer (5)
Gotthard, Karl (4)
visa fler...
Humphreys, Aelys M. (4)
Eriksson, Ove, Profe ... (3)
Eriksson, Ove (3)
Hylander, Kristoffer ... (3)
Lehtilä, Kari (3)
Tack, Ayco J. M. (2)
De Frenne, Pieter (2)
Merinero, Sonia (2)
Toräng, Per (2)
Rydin, Håkan (2)
Arnell, Matilda, 198 ... (2)
Dahlgren, Johan P (2)
van Dijk, Laura J. A ... (2)
Gotthard, Karl, Doce ... (1)
Meineri, Eric (1)
Abdelfattah, Ahmed (1)
Ericsson, Göran (1)
Elmqvist, Thomas (1)
Ågren, Jon, professo ... (1)
Biere, Arjen, Dr. (1)
Winder, Monika, Prof ... (1)
Dahlberg, Johan (1)
Lönn, Mikael (1)
Andersson, Petter, 1 ... (1)
Hambäck, Peter, Prof ... (1)
Roslin, Tomas, Docen ... (1)
Danell, Kjell (1)
Bergström, Roger (1)
Snäll, Tord (1)
Kautsky, Lena (1)
Cousins, Sara A.O. P ... (1)
Moles, Angela, Profe ... (1)
Ehrlén, Johan, 1956- (1)
Arvanitis, Leena (1)
Arvanitis, Leena, 19 ... (1)
Wiklund, Christer, P ... (1)
Thompson, John N., P ... (1)
Hagenblad, Jenny (1)
Skarpe, Christina (1)
Tuomi, Juha (1)
Boalt, Elin (1)
Boalt, Elin, 1976- (1)
Koricheva, Julia, Do ... (1)
Bolinder, Kristina, ... (1)
visa färre...
Lärosäte
Stockholms universitet (57)
Uppsala universitet (12)
Södertörns högskola (1)
Språk
Engelska (60)
Odefinierat språk (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy