SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;hsvcat:4"

Sökning: WFRF:(Ehrlén Johan) > Lantbruksvetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christiansen, Ditte Marie, 1990-, et al. (författare)
  • Effects of past and present microclimates on northern and southern plant species in a managed forest landscape
  • 2023
  • Ingår i: Journal of Vegetation Science. - 1100-9233 .- 1654-1103. ; 34:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Near-ground temperatures can vary substantially over relatively short distances, enabling species with different temperature preferences and geographical distributions to co-exist within a small area. In a forest landscape, the near-ground temperatures may change due to management activities that alter forest density. As a result of such management activities, current species distributions and performances might not only be affected by current microclimates, but also by past conditions due to time-lagged responses.Location: Sweden.Methods: We examined the effects of past and current microclimates on the distributions and performances of two northern, cold-favoured, and two southern, warm-favoured, plant species in 53 managed forest sites. Each pair was represented by one vascular plant and one bryophyte species. We used temperature logger data and predictions from microclimate models based on changes in basal area to relate patterns of occurrence, abundance, and reproduction to current and past microclimate.Results: The two northern species were generally favoured by microclimates that were currently cold, characterised by later snowmelt and low accumulated heat over the growing season. In contrast, the two southern species were generally favoured by currently warm microclimates, characterised by high accumulated heat over the growing season. Species generally had higher abundance in sites with a preferred microclimate both in the past and present, and lower abundance than expected from current conditions, if the past microclimate had changed from warm to cold or vice versa, indicating time-lags in abundance patterns of the species.Conclusions: Our results show a potential importance of past and present microclimate heterogeneity for the co-existence of species with different temperature preferences in the same landscape and highlight the possibility to manage microclimates to mitigate climate change impacts on forest biodiversity.
  •  
2.
  • Fernández-Fernández, P., et al. (författare)
  • Different effects of warming treatments in forests versus hedgerows on the understorey plant Geum urbanum
  • 2022
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 24:5, s. 734-744
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions.Adult individuals were transplanted in three forest–hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open-top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses.Temperature increases due to open-top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability.Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.
  •  
3.
  • Koelemeijer, Irena Adia, 1994-, et al. (författare)
  • Forest edge effects on moss growth are amplified by drought
  • 2023
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 33:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest fragmentation increases the amount of edges in the landscape. Differences in wind, radiation, and vegetation structure create edge-to-interior gradients in forest microclimate, and these gradients are likely to be more pronounced during droughts and heatwaves. Although the effects of climate extremes on edge influences have potentially strong and long-lasting impacts on forest understory biodiversity, they are not well understood and are not often considered in management and landscape planning. Here we used a novel method of retrospectively quantifying growth to assess biologically relevant edge influences likely caused by microclimate using Hylocomium splendens, a moss with annual segments. We examined how spatio-temporal variation in drought across 3 years and 46 sites in central Sweden, affected the depth and magnitude of edge influences. We also investigated whether edge effects during drought were influenced by differences in forest structure. Edge effects were almost twice as strong in the drought year compared to the non-drought years, but we did not find clear evidence that they penetrated deeper into the forest in the drought year. Edge influences were also greater in areas that had fewer days with rain during the drought year. Higher levels of forest canopy cover and tree height buffered the magnitude of edge influence in times of drought. Our results demonstrate that edge effects are amplified by drought, suggesting that fragmentation effects are aggravated when droughts become more frequent and severe. Our results suggest that dense edges and buffer zones with high canopy cover can be important ways to mitigate negative drought impacts in forest edges.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy