SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;pers:(Greiser Caroline)"

Sökning: WFRF:(Ehrlén Johan) > Greiser Caroline

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christiansen, Ditte Marie, 1990-, et al. (författare)
  • Effects of past and present microclimates on northern and southern plant species in a managed forest landscape
  • 2023
  • Ingår i: Journal of Vegetation Science. - 1100-9233 .- 1654-1103. ; 34:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Near-ground temperatures can vary substantially over relatively short distances, enabling species with different temperature preferences and geographical distributions to co-exist within a small area. In a forest landscape, the near-ground temperatures may change due to management activities that alter forest density. As a result of such management activities, current species distributions and performances might not only be affected by current microclimates, but also by past conditions due to time-lagged responses.Location: Sweden.Methods: We examined the effects of past and current microclimates on the distributions and performances of two northern, cold-favoured, and two southern, warm-favoured, plant species in 53 managed forest sites. Each pair was represented by one vascular plant and one bryophyte species. We used temperature logger data and predictions from microclimate models based on changes in basal area to relate patterns of occurrence, abundance, and reproduction to current and past microclimate.Results: The two northern species were generally favoured by microclimates that were currently cold, characterised by later snowmelt and low accumulated heat over the growing season. In contrast, the two southern species were generally favoured by currently warm microclimates, characterised by high accumulated heat over the growing season. Species generally had higher abundance in sites with a preferred microclimate both in the past and present, and lower abundance than expected from current conditions, if the past microclimate had changed from warm to cold or vice versa, indicating time-lags in abundance patterns of the species.Conclusions: Our results show a potential importance of past and present microclimate heterogeneity for the co-existence of species with different temperature preferences in the same landscape and highlight the possibility to manage microclimates to mitigate climate change impacts on forest biodiversity.
  •  
2.
  • Greiser, Caroline, et al. (författare)
  • Climate limitation at the cold edge : contrasting perspectives from species distribution modelling and a transplant experiment
  • 2020
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 43:5, s. 637-647
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of climate in determining range margins is often studied using species distribution models (SDMs), which are easily applied but have well-known limitations, e.g. due to their correlative nature and colonization and extinction time lags. Transplant experiments can give more direct information on environmental effects, but often cover small spatial and temporal scales. We simultaneously applied a SDM using high-resolution spatial predictors and an integral projection (demographic) model based on a transplant experiment at 58 sites to examine the effects of microclimate, light and soil conditions on the distribution and performance of a forest herb, Lathyrus vernus, at its cold range margin in central Sweden. In the SDM, occurrences were strongly associated with warmer climates. In contrast, only weak effects of climate were detected in the transplant experiment, whereas effects of soil conditions and light dominated. The higher contribution of climate in the SDM is likely a result from its correlation with soil quality, forest type and potentially historic land use, which were unaccounted for in the model. Predicted habitat suitability and population growth rate, yielded by the two approaches, were not correlated across the transplant sites. We argue that the ranking of site habitat suitability is probably more reliable in the transplant experiment than in the SDM because predictors in the former better describe understory conditions, but that ranking might vary among years, e.g. due to differences in climate. Our results suggest that L. vernus is limited by soil and light rather than directly by climate at its northern range edge, where conifers dominate forests and create suboptimal conditions of soil and canopy-penetrating light. A general implication of our study is that to better understand how climate change influences range dynamics, we should not only strive to improve existing approaches but also to use multiple approaches in concert.
  •  
3.
  • Greiser, Caroline, et al. (författare)
  • Hiding from the climate : Characterizing microrefugia for boreal forest understory species
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:2, s. 471-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is likely to shift the range margins of species poleward, but fine-scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold-adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin. We located 99 microrefugia, defined as sites with edge populations of 12 widespread boreal forest understory species (vascular plants, mosses, liverworts and lichens) in an area of ca. 24,000 km(2) along the species' southern range margin in central Sweden. Within each population, a logger measured temperature eight times per day during one full year. Using univariate and multivariate analyses, we examined the differences of the populations' microclimates with the mean and range of microclimates in the landscape, and identified the typical climate, vegetation and topographic features of these habitats. Comparison sites were drawn from another logger data set (n = 110), and from high-resolution microclimate maps. The microrefugia were mainly places characterized by lower summer and autumn maximum temperatures, late snow melt dates and high climate stability. Microrefugia also had higher forest basal area and lower solar radiation in spring and autumn than the landscape average. Although there were common trends across northern species in how microrefugia differed from the landscape average, there were also interspecific differences and some species contributed more than others to the overall results. Our findings provide biologically meaningful criteria to locate and spatially predict potential climate microrefugia in the boreal forest. This opens up the opportunity to protect valuable sites, and adapt forest management, for example, by keeping old-growth forests at topographically shaded sites. These measures may help to mitigate the loss of genetic and species diversity caused by rear-edge contractions in a warmer climate.
  •  
4.
  • Greiser, Caroline, 1987- (författare)
  • Microclimate at range margins : Consequences for boreal forest understory species
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A warmer climate will shift species distributional range margins poleward, but near-ground microclimates may modify these shifts. Cold-adapted northern species at their rear edge may survive locally in microrefugia with a colder microclimate, and warm-adapted southern species at their leading edge may colonize stepping stone habitats with a warmer microclimate. However, we do not always know if species ranges are limited by climate and which role microclimate variation plays in modifying range margins. This is especially true for lowland forests, where forest structure and composition have relatively large influences on near-ground microclimates.In this thesis, I explored patterns and drivers of forest microclimate at the southern margin of the boreal zone in central Sweden, where many northern and southern species meet. First, I measured, modelled and mapped near-ground temperatures across ca. 20 000 km2 of forested land (Paper I). Second, I tested if cold and warm microclimates favour northern and southern understory species, respectively. To answer this, I investigated the occurrence and performance patterns of understory vascular plants, bryophytes and lichens across microclimate gradients at the species’ northern or southern range margins (Paper II-IV). I performed both correlational analyses on natural populations and experimental testing with transplanted populations. Third, I derived recommendations and tools for biodiversity conservation and forest management (Paper I-IV).I found high spatial and temporal variation of forest microclimate, which was in the summer mainly linked to differences in forest density and in the cold season to terrain effects (Paper I). Cold and warm microclimates were occupied by natural edge populations of northern and southern species, respectively (Paper II and IV). However, in the transplant experiments with removed competition other factors were more important for the species performance. The southern herb appeared to cope well with the range of microclimate at its current northern range margin and instead seems to be limited by soil and light in northern conifer-dominated forests (Paper IV). The northern transplanted bryophytes and lichens showed no or a positive response to warmer temperature, but also to higher moisture, to more conifers in the overstory and to less gastropod grazing (Paper III). The results indicate that competition with southern species, herbivory, leaf litter and water scarcity might be more important than temperature as direct limiting factors at the species’ current southern range margin. To conclude, microclimate influences the occurrence and performance of range edge populations, but it likely does so indirectly via effects on water availability and biotic interactions.Forest management heavily modifies near-ground temperature and humidity and hence likely impacts the climate-driven range shifts of understory species. I call for considering these effects in conservation and management actions, e.g. by protecting valuable microclimates, moving from clear-cutting to selective logging, reducing forest fragmentation and drainage and favouring either broad-leaved or coniferous trees in the overstory - depending on the local conservation target (Paper I-IV). Climate-change induced biodiversity loss may thus be slowed down by responsible forest management that provides stepping stone habitats for advancing southern species as well as microrefugia for retreating northern species.
  •  
5.
  • Greiser, Caroline, et al. (författare)
  • Monthly microclimate models in a managed boreal forest landscape
  • 2018
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 250-251, s. 147-158
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of microclimate studies have been done in topographically complex landscapes to quantify and predict how near-ground temperatures vary as a function of terrain properties. However, in forests understory temperatures can be strongly influenced also by vegetation. We quantified the relative influence of vegetation features and physiography (topography and moisture-related variables) on understory temperatures in managed boreal forests in central Sweden. We used a multivariate regression approach to relate near-ground temperature of 203 loggers over the snow-free seasons in an area of ∼16,000 km2 to remotely sensed and on-site measured variables of forest structure and physiography. We produced climate grids of monthly minimum and maximum temperatures at 25 m resolution by using only remotely sensed and mapped predictors. The quality and predictions of the models containing only remotely sensed predictors (MAP models) were compared with the models containing also on-site measured predictors (OS models). Our data suggest that during the warm season, where landscape microclimate variability is largest, canopy cover and basal area were the most important microclimatic drivers for both minimum and maximum temperatures, while physiographic drivers (mainly elevation) dominated maximum temperatures during autumn and early winter. The MAP models were able to reproduce findings from the OS models but tended to underestimate high and overestimate low temperatures. Including important microclimatic drivers, particularly soil moisture, that are yet lacking in a mapped form should improve the microclimate maps. Because of the dynamic nature of managed forests, continuous updates of mapped forest structure parameters are needed to accurately predict temperatures. Our results suggest that forest management (e.g. stand size, structure and composition) and conservation may play a key role in amplifying or impeding the effects of climate-forcing factors on near-ground temperature and may locally modify the impact of global warming.
  •  
6.
  • Greiser, Caroline, 1987-, et al. (författare)
  • Southern margin of boreal bryophytes and lichens not directly limited by warmer temperatures
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Species at their warm range margin are potentially threatened by a warmer climate, but may escape regional warming in locally colder microclimates. We evaluated whether boreal understory bryophytes and lichens show signs of climate limitation, i.e. whether they perform better in cold and/or humid microclimates at their warm range margin. We transplanted a moss, a liverwort, and a lichen to 58 boreal forest sites with different microclimates at the species’ southern range margin in central Sweden. Species were grown in garden soil to exclude effects of competition and soil quality. We followed the transplants over three growing seasons (2016-2018) and modelled growth and vitality for each species and year as a function of sub-canopy temperature, soil moisture, air humidity and forest type. We expected a negative response to warmer temperatures and drier conditions if the species were directly climate-limited. Transplant performance increased with warmer temperatures and at sites with more conifers. Soil moisture had a positive effect, especially on the moss in the last year 2018, which was extremely hot and dry. The lichen was negatively affected only by gastropod grazing. The results indicate that competition, herbivory, leaf litter and water scarcity might be more important than temperature for performance at the species’ warm range margin. Forest microrefugia, habitats were these species could persist regional warming, may therefore mainly be sites with less competitors and enemies, and with sufficient moisture and more conifers in the overstory. Our study illustrates that transplant experiments are a powerful tool to study range dynamics and the multiple environmental factors that influence them. Our results also suggest that multi-year experiments are valuable for identifying potential range-limiting effects that occur only after some time, or under extreme weather conditions e.g. in very dry years.
  •  
7.
  • Greiser, Caroline, et al. (författare)
  • Warm range margin of boreal bryophytes and lichens not directly limited by temperatures
  • 2021
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 109:10, s. 3724-3736
  • Tidskriftsartikel (refereegranskat)abstract
    • Species at their warm range margin are potentially threatened by higher temperatures, but may persist in microrefugia. Whether such microsites occur due to more suitable microclimate or due to lower biotic pressure from, for example competitive species, is still not fully resolved. We examined whether boreal bryophytes and lichens show signs of direct climate limitation, that is whether they perform better in cold and/or humid microclimates at their warm range margin. We transplanted a moss, a liverwort and a lichen to 58 boreal forest sites with different microclimates at the species' southern range margin in central Sweden. Species were grown in garden soil patches to control the effects of competitive exclusion and soil quality. We followed the transplanted species over three growing seasons (2016-2018) and modelled growth and vitality for each species as a function of subcanopy temperature, soil moisture, air humidity and forest type. In 2018, we also recorded the cover of other plants having recolonized the garden soil patches and modelled this potential future competition with the same environmental variables plus litter. Species performance increased with warmer temperatures, which was often conditional on high soil moisture, and at sites with more conifers. Soil moisture had a positive effect, especially on the moss in the last year 2018, when the growing season was exceptionally hot and dry. The lichen was mostly affected by gastropod grazing. Recolonization of other plants was also faster at warmer and moister sites. The results indicate that competition, herbivory, shading leaf litter and water scarcity might be more important than the direct effects of temperature for performance at the species' warm range margin. Synthesis. In a transplant experiment with three boreal understorey species, we did not find signs of direct temperature limitation towards the south. Forest microrefugia, that is habitats where these species could persist regional warming, may instead be sites with fewer competitors and enemies, and with sufficient moisture and more conifers in the overstorey.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy