SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;srt2:(2010-2014);pers:(Blomberg Simon P.)"

Sökning: WFRF:(Ehrlén Johan) > (2010-2014) > Blomberg Simon P.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buckley, Yvonne M., et al. (författare)
  • Causes and consequences of variation in plant population growth rate : a synthesis of matrix population models in a phylogenetic context
  • 2010
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 13:9, s. 1182-1197
  • Forskningsöversikt (refereegranskat)abstract
    • Explaining variation in population growth rates is fundamental to predicting population dynamics and population responses to environmental change. In this study, we used matrix population models, which link birth, growth and survival to population growth rate, to examine how and why population growth rates vary within and among 50 terrestrial plant species. Population growth rates were more similar within species than among species; with phylogeny having a minimal influence on among-species variation. Most population growth rates decreased over the observation period and were negatively autocorrelated between years; that is, higher than average population growth rates tended to be followed by lower than average population growth rates. Population growth rates varied more through time than space; this temporal variation was due mostly to variation in post-seedling survival and for a subset of species was partly explained by response to environmental factors, such as fire and herbivory. Stochastic population growth rates departed from mean matrix population growth rate for temporally autocorrelated environments. Our findings indicate that demographic data and models of closely related plant species cannot necessarily be used to make recommendations for conservation or control, and that post-seedling survival and the sequence of environmental conditions are critical for determining plant population growth rate.
  •  
2.
  • Burns, Jean H., et al. (författare)
  • Empirical tests of life-history evolution theory using phylogenetic analysis of plant demography
  • 2010
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 98:2, s. 334-344
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. A primary goal of evolutionary ecology is to understand factors selecting for the diversity of life histories. Life-history components, such as time-to-reproduction, adult survivorship and fecundity, might differ among species because of variation in direct and indirect benefits of these life histories in different environments or might have lower-than-expected variability because of phylogenetic constraints. Here, we present a phylogenetic examination of demography and life histories using a data base of 204 terrestrial plant species. 2. Overall, statistical models without phylogeny were preferred to models with phylogeny for vital rates and elasticities, suggesting that they lacked phylogenetic signal and are evolutionarily labile. However, the effect of phylogeny was significant in models including sensitivities, suggesting that sensitivities exhibit greater phylogenetic signal than vital rates or elasticities. 3. Species with a greater age at first reproduction had lower fecundity, consistent with a cost of delayed reproduction, but only in some habitats (e.g. grassland). We found no evidence for an indirect benefit of delayed reproduction via a decrease in variation in fecundity with age to first reproduction. 4. The greater sensitivity and lower variation in survival than in fecundity was consistent with buffering of more important vital rates, as others have also found. This suggests that studies of life-history evolution should include survival, rather than only fecundity, for the majority of species. 5. Synthesis. Demographic matrix models can provide informative tests of life-history theory because of their shared construction and outputs and their widespread use among plant ecologists. Our comparative analysis suggested that there is a cost of delayed reproduction and that more important vital rates exhibit lower variability. The absolute importance of vital rates to population growth rates (sensitivities) exhibited phylogenetic signal, suggesting that a thorough understanding of life-history evolution might require an understanding of the importance of vital rates, not just their means, and the role of phylogenetic history.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy