SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) ;srt2:(2020-2022);pers:(van Dijk Laura J. A.)"

Sökning: WFRF:(Ehrlén Johan) > (2020-2022) > Van Dijk Laura J. A.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McClory, R. W., et al. (författare)
  • Spring phenology dominates over light availability in affecting seedling performance and plant attack during the growing season
  • 2021
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 495
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change can have important effects on plant performance by altering the relationship between spring temperature and other abiotic factors, such as light availability. Higher temperatures can advance plant phenology so that seedling germination takes place when days are shorter, and affect light availability for understory plants by altering the relative timing of seedling germination and canopy closure. To predict the effects of climate-induced changes in phenology and light availability on plant performance and species interactions during the growing season, we need to determine i) how effects of plant phenology on plant performance and the plant-associated community depend on light availability, and ii) to what extent effects of phenology and light availability on plant performance are direct vs. mediated by changes in the plant-associated community. We conducted a multifactorial field experiment to test for the effect of germination timing and light availability on Quercus robur seedling traits and performance, as well as attack by specialist plant pathogens, insects, and small mammals. Germination timing strongly affected seedling performance whereas light availability’s effects were limited. Likewise, germination timing strongly affected herbivore and pathogen attack, whereas light availability and its interaction with germination timing explained a minor part of the variation. Small mammals preferentially attacked later germinating seedlings, which strongly affected plant survival, while insect herbivores and pathogens did not mediate the effect of germination timing and light availability on plant performance. The results showed that the effect of germination timing can have greater influence than light availability on plant performance and plant attack, and that small mammal herbivores can play a larger role than diseases and insect herbivores in mediating the effect of spring phenology on plant performance. Together, these findings advance our understanding of the consequences of climate-induced changes in spring phenology and the abiotic environment on plant performance within a community context.
  •  
2.
  • Mutz, Jessie, et al. (författare)
  • Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level
  • 2021
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 197:2, s. 447-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal life history events are often interdependent, but we know relatively little about how the relationship between different events is influenced by the abiotic and biotic environment. Such knowledge is important for predicting the immediate and evolutionary phenological response of populations to changing conditions. We manipulated germination timing and shade in a multi-factorial experiment to investigate the relationship between spring and autumn phenology in seedlings of the pedunculate oak, Quercus robur, and whether this relationship was mediated by natural colonization of leaves by specialist fungal pathogens (i.e., the oak powdery mildew complex). Each week delay in germination corresponded to about 2 days delay in autumn leaf senescence, and heavily shaded seedlings senesced 5–8 days later than seedlings in light shade or full sun. Within seedlings, leaves on primary-growth shoots senesced later than those on secondary-growth shoots in some treatments. Path analyses demonstrated that germination timing and shade affected autumn phenology both directly and indirectly via pathogen load, though the specific pattern differed among and within seedlings. Pathogen load increased with later germination and greater shade. Greater pathogen load was in turn associated with later senescence for seedlings, but with earlier senescence for individual leaves. Our findings show that relationships between seasonal events can be partly mediated by the biotic environment and suggest that these relationships may differ between the plant and leaf level. The influence of biotic interactions on phenological correlations across scales has implications for understanding phenotypic variation in phenology and for predicting how populations will respond to climatic perturbation.
  •  
3.
  • van Dijk, Laura J. A, et al. (författare)
  • Direct and insect-mediated effects of pathogens on plant growth and fitness
  • 2021
  • Ingår i: Journal of Ecology. - : British Ecological Society. - 0022-0477 .- 1365-2745. ; 109:7, s. 2769-2779
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Plants are attacked by a large diversity of pathogens. These pathogens can affectplant growth and fitness directly but also indirectly by inducing changes in the host plant that affect interactions with beneficial and antagonistic insects. Yet, we lack insights into the relative importance of direct and indirect effects of pathogens on their host plants, and how these effects differ among pathogen species.2. In this study, we examined four fungal pathogens on the wood anemone Anemone nemorosa. We used field observations to record the impacts of each pathogen species on plant growth and fitness throughout the season, and experimental hand pollination and insect feeding trials to assess whether fitness impacts were mediated by pathogen-induced changes in plant–pollinator and plant–herbivore interactions.3. Three out of four pathogens negatively affected plant size, and pathogens differed strongly in their effect on plant architecture. Infected plants had lower fitness, but this effect was not mediated by pollinators or herbivores. Even so, two out of four pathogens reduced herbivory on anemones in the field, and we found negative effects of pathogen infection on herbivore preference and performance in feeding trials.4. Synthesis. Our results are of broader significance in two main respects. First, we demonstrated that pathogens negatively affected plant growth and fitness, and that the magnitude of these effects varied among pathogen species, suggesting that pathogens constitute important selective agents that differ in strength. Second, direct effects on plant fitness were more important than effects mediatedby beneficial and antagonistic insects. In addition, although we did not detect insect-mediated effects on plant fitness, the negative effects of some pathogens on herbivore preference and performance indicate that pathogen communities influence the distribution and abundance of herbivores.
  •  
4.
  • van Dijk, Laura J. A., 1990-, et al. (författare)
  • Single, but not dual, attack by a biotrophic pathogen and a sap-sucking insect affects the oak leaf metabolome
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants interact with a multitude of microorganisms and insects, both below- and above ground, which might influence plant metabolism. Despite this, we lack knowledge of the impact of natural soil communities and multiple aboveground attackers on the metabolic responses of plants, and whether plant metabolic responses to single attack can predict responses to dual attack. We used untargeted metabolic fingerprinting (gas chromatography-mass spectrometry, GC-MS) on leaves of the pedunculate oak, Quercus robur, to assess the metabolic response to different soil microbiomes and aboveground single and dual attack by oak powdery mildew (Erysiphe alphitoides) and the common oak aphid (Tuberculatus annulatus). Distinct soil microbiomes were not associated with differences in the metabolic profile of oak seedling leaves. Single attacks by aphids or mildew had pronounced but different effects on the oak leaf metabolome, but we detected no difference between the metabolomes of healthy seedlings and seedlings attacked by both aphids and powdery mildew. Our findings show that aboveground attackers can have species-specific and non-additive effects on the leaf metabolome of oak. The lack of a metabolic signature detected by GC-MS upon dual attack might suggest the existence of a potential negative feedback, and highlights the importance of considering the impacts of multiple attackers to gain mechanistic insights into the ecology and evolution of species interactions and the structure of plant-associated communities, as well as for the development of sustainable strategies to control agricultural pests and diseases and plant breeding.
  •  
5.
  • van Dijk, Laura J. A., 1990-, et al. (författare)
  • Soil microbiomes drive aboveground plant–pathogen–insect interactions
  • 2022
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 2022:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants interact with a large diversity of microbes and insects, both below and above ground. While studies have shown that belowground microbes affect the performance of plants and aboveground organisms, we lack insights into how belowground microbial communities may shape interactions between aboveground pathogens and insects. We investigated how soil microbiomes and aboveground organisms affect plant growth and development, and whether differences in soil microbiomes influence interactions between aboveground organisms. We conducted a growth-chamber experiment with oak seedlings Quercus robur growing in three soils with similar abiotic soil properties but with distinct natural soil microbiomes. Seedlings were subjected to single or dual attack by powdery mildew Erysiphe alphitoides and aphids Tuberculatus annulatus, either in the presence or absence of prior attack by a free-feeding caterpillar Phalera bucephala. Soil microbiomes were associated with differences in seedling height, and seedlings with multiple aboveground organisms had more but smaller leaves than healthy seedlings. The soil microbiome affected the severity of powdery mildew infection, and mediated the impact of co-occurring aboveground organisms on aphid population size. Our study highlights that plant performance is affected by natural soil microbiomes as well as aboveground organisms, and that natural soil microbiomes can affect interactions between pathogens and insects. These findings are important to understand species interactions in natural systems, as well as for practical applications, such as manipulation of soil microbiomes to manage agricultural pests and diseases.
  •  
6.
  • van Dijk, Laura J. A., et al. (författare)
  • The relationship between pathogen life-history traits and metapopulation dynamics
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 233:6, s. 2585-2598
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant pathogen traits, such as transmission mode and overwintering strategy, may have important effects on dispersal and persistence, and drive disease dynamics. Still, we lack insights into how life-history traits influence spatiotemporal disease dynamics.We adopted a multifaceted approach, combining experimental assays, theory and field surveys, to investigate whether information about two pathogen life-history traits – infectivity and overwintering strategy – can predict pathogen metapopulation dynamics in natural systems. For this, we focused on four fungal pathogens (two rust fungi, one chytrid fungus and one smut fungus) on the forest herb Anemone nemorosa.Pathogens infecting new plants mostly via spores (the chytrid and smut fungi) had higher patch occupancies and colonization rates than pathogens causing mainly systemic infections and overwintering in the rhizomes (the two rust fungi). Although the rust fungi more often occupied well-connected plant patches, the chytrid and smut fungi were equally or more common in isolated patches. Host patch size was positively related to patch occupancy and colonization rates for all pathogens.Predicting disease dynamics is crucial for understanding the ecological and evolutionary dynamics of host–pathogen interactions, and to prevent disease outbreaks. Our study shows that combining experiments, theory and field observations is a useful way to predict disease dynamics.
  •  
7.
  • van Dijk, Laura J. A., et al. (författare)
  • The timing and asymmetry of plant-pathogen-insect interactions
  • 2020
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 287:1935
  • Tidskriftsartikel (refereegranskat)abstract
    • Insects and pathogens frequently exploit the same host plant and can potentially impact each other's performance. However, studies on plant-pathogen-insect interactions have mainly focused on a fixed temporal setting or on a single interaction partner. In this study, we assessed the impact of time of attacker arrival on the outcome and symmetry of interactions between aphids (Tuberculatus annulatus), powdery mildew (Erysiphe alphitoides), and caterpillars (Phalera bucephala) feeding on pedunculate oak,Quercus robur, and explored how single versus multiple attackers affect oak performance. We used a multifactorial greenhouse experiment in which oak seedlings were infected with either zero, one, two, or three attackers, with the order of attacker arrival differing among treatments. The performances of all involved organisms were monitored throughout the experiment. Overall, attackers had a weak and inconsistent impact on plant performance. Interactions between attackers, when present, were asymmetric. For example, aphids performed worse, but powdery mildew performed better, when co-occurring. Order of arrival strongly affected the outcome of interactions, and early attackers modified the strength and direction of interactions between later-arriving attackers. Our study shows that interactions between plant attackers can be asymmetric, time-dependent, and species specific. This is likely to shape the ecology and evolution of plant-pathogen-insect interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy