SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) srt2:(2005-2009);pers:(Mildén Mikael)"

Sökning: WFRF:(Ehrlén Johan) > (2005-2009) > Mildén Mikael

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herben, T, et al. (författare)
  • Longterm spatial dynamics of Succisa pratensis in a changing rural landscape : linking dynamical modelling with historical maps
  • 2006
  • Ingår i: Journal of Ecology. - : Wiley-Blackwell. - 0022-0477 .- 1365-2745. ; 94:1, s. 131-143
  • Tidskriftsartikel (refereegranskat)abstract
    • We attempt to explain the current distribution of a long-lived perennial plant, Succisa pratensis, in a rural landscape in southern Sweden by linking its population biology with documented changes in the landscape, using a dynamical, spatially explicit model incorporating population dynamics and spatial spreading of the plant. Changes in the landscape were inferred from historical maps (1850 and 1900) and aerial photographs (1945 and 2001). We tested whether predictions for the current species distribution are affected by assumptions about its early 19th century distribution, to determine whether recent history and current processes are dominant, and how past landscape changes determine current distributions. Initial conditions influence predictions of current distribution, suggesting that the current distribution still partly reflects the distribution of the species in the early 19th century. A period of 150 years is too short for Succisa to have spread extensively if dispersal parameters are given realistic values. Simulations in which present-day land-use patterns were imposed at earlier dates showed that changes in landscape structure over the past 175 years also had a strong effect on the present-day habitat occupancy and population sizes of Succisa. The dominant process for Succisanow is extinction from marginal habitats. It is therefore likely that the (relatively) high present-day occupation patterns are still due to much larger areas having been available in the past rather than to successful dispersal. Although the species has responded to landscape changes, there is little evidence of population sizes reaching equilibrium. Our approach shows that the wealth of landscape information available from historical maps can be linked with data on population biology by means of dynamical models that can make predictions about species dynamics.
  •  
2.
  • Mildén, Mikael, 1973- (författare)
  • Local and regional dynamics of Succisa pratensis
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Land use change is considered to be one of the biggest threat to global species diversity. In Sweden, abandonment of grazing is one of the most common reasons for decline in species richness in semi-natural grasslands. Today semi-natural grasslands often occur as more or less isolated fragments. The result for species that benefits from grazing is a smaller area of suitable habitat and higher extinction risks and a lowered ability to colonize new areas. Succisa pratensis is a long-lived perennial plant that benefits from grazing and is common in Swedish semi-natural grasslands. I have assessed the performance of Succisa pratensis at various spatial and temporal scales, in a Swedish rural landscape. I performed demographic matrix modelling of populations at grazed and ungrazed sites. A regional level was then added, by incorporating data collected from a large number of populations and habitat types into the matrix models and extinction risks over 50 years were calculated. A dynamic metapopulation model was created and the regional dynamics, in terms of colonisations resulting from long distance dispersal and population extinctions were examined. The effects of management history were incorporated into the model by using historical maps. In addition, I made an analysis of the impact of management history on the distribution and performance of four grassland species, using vegetation maps from 1945 and 2001. Local dynamics of Succisa pratensis was negatively affected by abandonment of grazing. Recorded population sizes were ten times higher in grazed sites than in ungrazed. The turnover rate of the system was estimated to about one extinction or colonisation per year. Both the simulation study and the analyses of vegetation maps suggested a pronounced legacy of management history in Succisa pratensis in the study landscape. Overall, the results of this thesis demonstrate the importance of management history for species in the rural landscape.
  •  
3.
  • Mildén, Mikael, et al. (författare)
  • Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape
  • 2006
  • Ingår i: Ecological Modelling. - : Elsevier B.V.. - 0304-3800 .- 1872-7026. ; 199:4, s. 464-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Most metapopulation models neglect the local dynamics, and systems characterized by slow population turnover, time lags and non-equilibrium, are only rarely examined within a metapopulation context. In this study we used a realistic, spatially explicit, dynamic metapopulation model of a long-lived grassland plant, Succisa pratensis, to examine the relative importance of local population dynamics, and short and long-distance dispersal of seeds. Using both vegetation composition and sowing experiments we identified 94 occupied and 43 unoccupied, but suitable, habitat patches in a 7-km2 landscape. Local population dynamics were studied in permanent plots in five populations. Simulation results showed that the colonization and extinction dynamics of S. pratensis were slow with about one colonization or extinction per year and the time frame for the population system to attain equilibrium in a constant landscape was several thousands of years. Sensitivity analyses demonstrated that occasional long-distance dispersal had a large influence on population turnover rates whereas regular short-distance dispersal had little effect. Our model also allowed us to assess how demographic processes affect not only local population growth but also regional dynamics. Fecundity was more important, compared with growth and survival, in a metapopulation context than when considered only within populations. The effect of landscape development was examined through different land-use scenarios and suggested that S. pratensis only very slowly colonizes new habitats that are made available. Our results with S. pratensis in an agricultural landscape show that long-distance dispersal and colonization dynamics play an important role for the regional distribution in long-lived plants but that time lags, and thus the effect of landscape history, are also very important.
  •  
4.
  • Pico, Xavier, et al. (författare)
  • Modelling the effects of genetics and habitat on the demography of a grassland herb
  • 2009
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 10, s. 122-130
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing evidence that genetic and ecological factors interact in determining population persistence. The demographic effects of inbreeding depression can largely depend on the ecological milieu. We used demographic data of the perennial herb Succisa pratensis from six populations in grazed and ungrazed sites with different soil moisture. We built an individual-based model assessing the demographic consequences of inbreeding depression in populations with different management and habitat. Today this plant has to cope with severe landscape fragmentation, deteriorating habitat conditions in terms of decreasing grazing intensity, and the effects of inbreeding depression. For each population we performed simulations testing two inbreeding depression hypotheses (partial dominance and overdominance) and three epistatic functions among loci. The results indicated stronger inbreeding depression effects for populations in unfavourable sites without grazing or in xeric habitats compared to populations in favourable mesic sites with grazing. Overall, we found stronger effects with overdominance, a result that emphasizes the importance of understanding the genetic mechanisms of inbreeding depression. Hence, management practices can interact with the genetic consequences of inbreeding depression in population dynamics, which may have important implications for plant population ecology and evolutionary dynamics of inbreeding depression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy