SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrlén Johan) srt2:(2015-2019);pers:(Rydin Catarina)"

Sökning: WFRF:(Ehrlén Johan) > (2015-2019) > Rydin Catarina

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolinder, Kristina, et al. (författare)
  • From near extinction to diversification by means of ashift in pollination mechanism in the gymnosperm relict Ephedra (Ephedraceae, Gnetales)
  • 2016
  • Ingår i: Botanical journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4074 .- 1095-8339. ; 180:4, s. 461-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination in gymnosperms is usually accomplished by means of wind, but some groups are insect-pollinated. We show that wind and insect pollination occur in the morphologically uniform genus Ephedra (Gnetales). Based on field experiments over several years, we demonstrate distinct differences between two Ephedra species that grow in sympatry in Greece in pollen dispersal and clump formation, insect visitations and embryo formation when insects are denied access to cones. Ephedra distachya, nested in the core clade of Ephedra, is anemophilous, which is probably the prevailing state in Ephedra. Ephedra foeminea, sister to the remaining species of the genus, is entomophilous and pollinated by a range of diurnal and nocturnal insects. The generalist entomophilous system of E.foeminea, with distinct but infrequent insect visitations, is in many respects similar to that reported for Gnetum and Welwitschia and appears ancestral in Gnetales. The Ephedra lineage is well documented already from the Early Cretaceous, but the diversity declined dramatically during the Late Cretaceous, possibly to near extinction around the Cretaceous-Palaeogene boundary. The clade imbalance between insect- and wind-pollinated lineages is larger than expected by chance and the shift in pollination mode may explain why Ephedra escaped extinction and began to diversify again.
  •  
2.
  • Bolinder, Kristina, 1987- (författare)
  • Pollen and pollination in Ephedra (Gnetales)
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ephedra (Gnetales) is a gymnosperm genus with a long evolutionary history; the first dispersed pollen grains with affinity to the group are known already from the Permian. This thesis focuses on the evolutionary history of the group and different aspects of its pollination mechanisms. Despite the limited number of extant species of the genus (50-60), and a low morphological and genetic divergence among species, there is variation in pollination syndrome in the genus. The prevailing state in Ephedra, and most gymnosperms, is wind pollination. It is therefore surprising that one species, E. foeminea, is insect-pollinated. Together with co-workers I documented the pollination syndromes of E. foeminea and a sympatric species, E. distachya, based on long term field experiments in north-eastern Greece and aerodynamic investigations and calculations. Placing the results into an evolutionary framework reveals that the insect-pollinated species E. foeminea is sister to the remaining (mostly wind-pollinated) genus, and indicates that insect pollination is the ancestral state in the Gnetales. During the course of evolution of the group there has been a shift to wind pollination, which may have played a crucial role for the diversification of the crown group in the Paleogene. Pollination biology is often correlated with the morphology of the pollen such that pollen grains of anemophilous plants are small with a smooth surface, whereas pollen grains of entomophilous plants are larger with an ornamented surface and a covering of pollenkitt. The pollen morphology of Ephedra can be broadly divided into two types: an ancestral type with an unbranched pseudosulcus between each pair of plicae, and a derived type with a branched pseudosulcus between each pair of plicae. Further, the pollen morphology and ultrastructure of the pollen wall in Ephedra are to some degree correlated with the pollination syndrome and capability of long distance dispersal. Pollen of E. foeminea has a denser ultrastructure, as a result a higher settling velocity and is therefore capable of flying shorter distances than does pollen of the anemophilous E. distachya, and other investigated anemophilous species that show a more spacious ultrastructure of the pollen grain. These results can be useful in the reconstruction of the pollination mechanism of extinct taxa of the Ephedra-lineage in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy