SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eidietis N. W.) "

Sökning: WFRF:(Eidietis N. W.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
3.
  • Du, X. D., et al. (författare)
  • Multiscale Chirping Modes Driven by Thermal Ions in a Plasma with Reactor-Relevant Ion Temperature
  • 2021
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvenic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in similar to 0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature greater than or similar to 10 keV and high-beta plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfven continuum caused by the compressibility of ions with reactor-relevant ion temperature.
  •  
4.
  • Paz-Soldan, C., et al. (författare)
  • Recent DIII-D advances in runaway electron measurement and model validation
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel measurements and modeling of runaway electron (RE) dynamics in DIII-D have resolved experimental discrepancies and validated predictions for ITER, improving confidence that RE avoidance and mitigation can be predictably achieved. Considering RE formation, first experimental assessments of the RE seed current demonstrates that present hot-tail theories are not yet accurate and require improved treatment of the pellet dynamics. Novel measurements of kinetic instabilities in the MHz-range have been made in the RE formation phase, with the intensity of these modes correlated with previously unexplained empirical thresholds for RE generation. Controlled RE dissipation experiments in quiescent regimes have validated RE distribution function dependencies on collisional and synchrotron damping, both in terms of distribution function shape and dissipation rates. Measurements of RE bremsstrahlung and synchrotron emission are now used in tandem to resolve energy and pitch-angle effects. A resolution to long-standing dissipation anomalies in the quiescent regime is offered by taking into account kinetic instability effects on RE phase-space dynamics. Kinetic instabilities in the 100-200 MHz range are directly observed, though modeling finds the largest dissipation arises from GHz range instabilities that are beyond the reach of existing diagnostics. Kinetic instabilities are also observed in the mature post-disruption RE plateau phase, so long as the collisional damping rate is reduced with low-Z injection. Experiments with high-Z injection find that the dissipation rate saturates with injection quantity, likely due to neutral diffusion rates being slower than vertical instability rates in DIII-D. Considering the final loss, a 0D model for first-wall Joule heating is found to be in agreement with experiment, and controlled access to RE equilibria with edge safety factor of two identifies novel dynamics brought about by large-scale kink instabilities. These dynamics are typified by fast (tens of microseconds) RE loss rates without RE beam regeneration. The above measurements and comparison with theory represent significant advances in the understanding of RE dynamics and indicate possible new opportunities for RE avoidance or mitigation via kinetic instabilities.
  •  
5.
  • Hollmann, E M, et al. (författare)
  • Estimate of pre-thermal quench non-thermal electron density profile during Ar pellet shutdowns of low-density target plasmas in DIII-D
  • 2021
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 28:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The radial density profile of pre-thermal quench (pre-TQ) early-time non-thermal (hot) electrons is estimated by combining electron cyclotron emission and soft x-ray data during the rapid shutdown of low-density (ne≲1019m−3) DIII-D target plasmas with cryogenic argon pellet injection. This technique is mostly limited in these experiments to the pre-TQ phase and quickly loses validity during the TQ. Two different cases are studied: a high (10 keV) temperature target and a low (4 keV) temperature target. The results indicate that early-time, low-energy (∼10 keV) hot electrons form ahead of the argon pellet as it enters the plasma, affecting the pellet ablation rate; it is hypothesized that this may be caused by rapid cross field transport of argon ions ahead of the pellet or by rapid cross field transport of hot electrons. Fokker-Planck modeling of the two shots suggests that the hot electron current is quite significant during the pre-TQ phase (up to 50% of the total current). Comparison between modeled pre-TQ hot electron current and post-TQ hot electron current inferred from avalanche theory suggests that hot electron current increases during the high-temperature target TQ but decreases during the low-temperature target TQ. The uncertainties in this estimate are large; however, if true, this suggests that TQ radial loss of hot electron current could be larger than previously estimated in DIII-D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy