SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekblad L) ;lar1:(ki)"

Sökning: WFRF:(Ekblad L) > Karolinska Institutet

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
3.
  • Rebelos, E, et al. (författare)
  • The Obesity Risk SNP (rs17782313) near the MC4R Gene Is Not Associated with Brain Glucose Uptake during Insulin Clamp-A Study in Finns
  • 2021
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The melanocortin system is involved in the control of adiposity through modulation of food intake and energy expenditure. The single nucleotide polymorphism (SNP) rs17782313 near the MC4R gene has been linked to obesity, and a previous study using magnetoencephalography has shown that carriers of the mutant allele have decreased cerebrocortical response to insulin. Thus, in this study, we addressed whether rs17782313 associates with brain glucose uptake (BGU). Here, [18F]-fluorodeoxyglucose positron emission tomography (PET) data from 113 Finnish subjects scanned under insulin clamp conditions who also had the rs17782313 determined were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. Statistical analysis was performed with statistical parametric mapping. There was no difference in age, BMI, and insulin sensitivity as indexed by the M value between the rs17782313-C allele carriers and non-carriers. Brain glucose uptake during insulin clamp was not different by gene allele, and it correlated with the M value, in both the rs17782313-C allele carriers and non-carriers. The obesity risk SNP rs17782313 near the MC4R gene is not associated with brain glucose uptake during insulin clamp in humans, and this frequent mutation cannot explain the enhanced brain glucose metabolic rates in insulin resistance.
  •  
4.
  • Snellman, Anniina, et al. (författare)
  • APOE epsilon 4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNeuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (A beta) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE epsilon 4 allele, the strongest genetic risk for sporadic AD.MethodsSixty 60-75-year-old APOE epsilon 4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent C-11-PK11195 PET (targeting 18-kDa translocator protein, TSPO), C-11-PiB PET (targeting A beta), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). C-11-PK11195 distribution volume ratios and C-11-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early A beta accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma A beta(1-42/1.40).ResultsIn our cognitively unimpaired sample, cortical C-11-PiB-binding increased according to APOE epsilon 4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite C-11-PK11195-binding did not differ between the APOE epsilon 4 gene doses (P = 0.27) or between A beta-positive and A beta-negative individuals (P = 0.81) and associated with higher A beta burden only in APOE epsilon 4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical C-11-PiB (Rho = 0.35, P = 0.040), but not C-11-PK11195-binding (Rho = 0.13, P = 0.47) in A beta-positive individuals. In the total cognitively unimpaired population, both higher composite C-11-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated C-11-PiB-binding was associated with lower APCC scores.ConclusionsOnly A beta burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE epsilon 4 gene dose. However, APOE epsilon 4 gene dose seemed to modulate the association between neuroinflammation and A beta.
  •  
5.
  • Ekblad, Laura L., et al. (författare)
  • Midlife insulin resistance, APOE genotype, and late-life brain amyloid accumulation
  • 2018
  • Ingår i: Neurology. - : Lippincott Williams & Wilkins. - 0028-3878 .- 1526-632X. ; 90:13, s. e1150-e1157
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To examine whether midlife insulin resistance is an independent risk factor for brain amyloid accumulation in vivo after 15 years, and whether this risk is modulated by APOE epsilon 4 genotype. Methods This observational study examined 60 elderly volunteers without dementia (mean age at baseline 55.4 and at follow-up 70.9 years, 55.5% women) from the Finnish population-based, nationwide Health2000 study with [C-11]Pittsburgh compound B-PET imaging in 2014-2016. The participants were recruited according to their homeostatic model assessment of insulin resistance (HOMA-IR) values in the year 2000, and their APOE epsilon 4 genotype. The exposure group (IR+, n = 30) consisted of individuals with HOMA-IR > 2.17 at baseline (highest tertile of the Health2000 study population), and the control group (IR-, n = 30) consisted of individuals with HOMA-IR < 1.25 at baseline (lowest tertile). The groups were enriched for APOE epsilon 4 carriers, resulting in 50% (n = 15) APOE epsilon 4 carriers in both groups. Analyses were performed with multivariate logistic and linear regression. Results An amyloid-positive PET scan was found in 33.3% of the IR-group and 60.0% of the IR+ group (odds ratio 3.0, 95% confidence interval 1.1-8.9, p = 0.04). The increased risk was seen in carriers and noncarriers of APOE epsilon 4 genotype. Higher midlife, but not late-life continuous HOMA-IR was associated with a greater brain amyloid burden at follow-up after multivariate adjustments for other cognitive and metabolic risk factors (ss = 0.11, 95% confidence interval 0.002-0.22, p = 0.04). Conclusions These results indicate that midlife insulin resistance is an independent risk factor for brain amyloid accumulation in elderly individuals without dementia.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Lin, CH, et al. (författare)
  • Human ex vivo spinal cord slice culture as a useful model of neural development, lesion, and allogeneic neural cell therapy
  • 2020
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 11:1, s. 320-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThere are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies.MethodsWe established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices.ResultsThe spinal cord hOCs presented relatively stable features during 7–21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+population and activated microglial population was not observed after allogeneic human neural cell therapy.ConclusionsWe conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy