SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ellegren Hans) ;pers:(Hultin Rosenberg Lina)"

Sökning: WFRF:(Ellegren Hans) > Hultin Rosenberg Lina

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, Erik, et al. (författare)
  • Natural selection in protein-coding genes expressed in avian brain
  • 2008
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 17:12, s. 3008-3017
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.
  •  
2.
  • Ellegren, Hans, et al. (författare)
  • Faced with inequality : chicken do not have a general dosage compensation of sex-linked genes
  • 2007
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 5:1, s. 40-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma. Results: Here, we use a microarray approach to show that male chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4-1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci. Intriguingly, without global dosage compensation, the female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds. Conclusion: The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination. Importantly, this report, together with a recent study of sex-biased expression in somatic tissue of chicken, demonstrates the first example of an organism with a lack of global dosage compensation, providing an unexpected case of a viable system with large-scale imbalance in gene expression between sexes.
  •  
3.
  • Mank, Judith E, et al. (författare)
  • Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression
  • 2008
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 171:1, s. 35-43
  • Tidskriftsartikel (refereegranskat)abstract
    • The numerous physiological and phenotypic differences between the sexes, as well as the disparity between male and female reproductive interests, result in sexual conflicts, which are often manifested at the genomic level. Sexually antagonistic genes benefit one sex at the expense of the other and experience strong pressure to evolve male- and female-specific expression patterns to resolve sexual conflicts and maximize fitness for both sexes. Sex-biased gene expression has recently been demonstrated for much of the metazoan transcriptome, suggesting that many loci are sexually antagonistic. However, many coding regions function in multiple processes throughout the organism. This pleiotropy increases the complexity of selection for any given gene, which in turn may obscure sex-specific selective pressures and hamper the evolution of sex-biased gene expression. Here we use microarray gene expression data, in conjunction with data on transcript abundance from expressed sequence tag libraries, to demonstrate that loci with sex-biased gene expression are significantly less pleiotropic than unbiased genes. This relationship was independent of sex chromosome gene dosage effects, and the results were concordant across two study organisms, chicken and mouse. These results suggest that the resolution of sexually antagonistic gene expression is determined by the evolutionary constraints acting on any given antagonistic locus.
  •  
4.
  • Mank, Judith E., et al. (författare)
  • Rapid evolution of female-biased, but not male-biased, genes expressed in the avian brain
  • 2007
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 24:12, s. 2698-2706
  • Tidskriftsartikel (refereegranskat)abstract
    • The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.
  •  
5.
  • Mank, Judith E., et al. (författare)
  • The unique genomic properties of sex-biased genes: insights from avian microarray data
  • 2008
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 9, s. 148-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In order to develop a framework for the analysis of sex-biased genes, we present a characterization of microarray data comparing male and female gene expression in 18 day chicken embryos for brain, gonad, and heart tissue. Results: From the 15982 significantly expressed coding regions that have been assigned to either the autosomes or the Z chromosome ( 12979 in brain, 13301 in gonad, and 12372 in heart), roughly 18% were significantly sex- biased in any one tissue, though only 4 gene targets were biased in all tissues. The gonad was the most sex- biased tissue, followed by the brain. Sex- biased autosomal genes tended to be expressed at lower levels and in fewer tissues than unbiased gene targets, and autosomal somatic sex- biased genes had more expression noise than similar unbiased genes. Sex-biased genes linked to the Z- chromosome showed reduced expression in females, but not in males, when compared to unbiased Z- linked genes, and sex- biased Z- linked genes were also expressed in fewer tissues than unbiased Z coding regions. Third position GC content, and codon usage bias showed some sex- biased effects, primarily for autosomal genes expressed in the gonad. Finally, there were several over-represented Gene Ontology terms in the sex- biased gene sets. Conclusion: On the whole, this analysis suggests that sex- biased genes have unique genomic and organismal properties that delineate them from genes that are expressed equally in males and females.
  •  
6.
  • Webster, Matthew T, et al. (författare)
  • Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
  • 2005
  • Ingår i: Mol Biol Evol. - 0737-4038. ; 22:6, s. 1468-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional biases in substitution pattern are likely to be responsible for the large-scale variation in base composition observed in vertebrate genomes. However, the evolutionary forces responsible for these biases are still not clearly defined. In order to study the processes of mutation and fixation across the entire human genome, we analyzed patterns of substitution in Alu repeats since their insertion. We also studied patterns of human polymorphism within the repeats. There is a highly significant effect of recombination rate on the pattern of substitution, whereas no such effect is seen on the pattern of polymorphism. These results suggest that regional biases in substitution are caused by biased gene conversion, a process that increases the probability of fixation of mutations that increase GC content. Furthermore, the strongest correlate of substitution patterns is found to be male recombination rates rather than female or sex-averaged recombination rates. This indicates that in addition to sexual dimorphism in recombination rates, the sexes also differ in the relative rates of crossover and gene conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy