SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emanuelsson M) ;pers:(Emanuelsson Lena 1961)"

Sökning: WFRF:(Emanuelsson M) > Emanuelsson Lena 1961

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Chai, W L, et al. (författare)
  • Contour analysis of an implant-soft tissue interface.
  • 2013
  • Ingår i: Journal of periodontal research. - : Wiley. - 1600-0765 .- 0022-3484. ; 48:5
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVE: Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM). METHODS: The 3D OMM was constructed by co-culturing a keratinocyte cell line TR146 and human oral fibroblasts on to an acellular dermis scaffold. On the fourth day, a Ti disk was placed into the model. Four types of Ti surface topographies, i.e. polished, machined, sandblasted and anodized were tested. After 10 d of culture, the specimens were processed based on undecalcified (ground sectioning), electropolishing and impression techniques for contour analysis of the implant-soft tissue interface. RESULTS: Under light microscopic examination of the ground and electropolishing sections, it was found that the cell line-based oral mucosa formed a peri-implant-like epithelium attachment on to all four types of Ti surfaces. In contour analysis, the most common contour observed between the cell line-based oral mucosa and Ti surface was at an angle ranging between 45° and 90°. CONCLUSION: The in vitro cell line-based 3D OMM formed a peri-implant-like epithelium at the implant-soft tissue interface. The contour of the implant-soft tissue interface for the four types of Ti surface was not significantly different.
  •  
5.
  • Chai, Wen L, et al. (författare)
  • Ultrastructural analysis of implant-soft tissue interface on a three dimensional tissue-engineered oral mucosal model.
  • 2012
  • Ingår i: Journal of biomedical materials research. Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 100A:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A three dimensional tissue-engineered human oral mucosal model (3D OMM) used in the investigation of implant-soft tissue interface was recently reported. The aim of this study was to examine the ultrastructural features of soft tissue attachment to various titanium (Ti) implant surfaces based on the 3D OMM. Two techniques, that is, focus ion beam (FIB) and electropolishing techniques were used to prepare specimens for transmission electron microscopic (TEM) analysis of the interface. The 3D OM consisting of both epithelial and connective tissue layers was constructed by co-culturing human oral keratinocytes and fibroblasts onto an acellular dermis scaffold. Four types of Ti surface topographies were tested: polished, machined (turned), sandblasted, and TiUnite. The specimens were then processed for TEM examination using FIB (Ti remained) and electropolishing (Ti removed) techniques. The FIB sections showed some artifact and lack of details of ultrastructural features. In contrast, the ultrathin sections prepared from the electropolishing technique showed a residual Ti oxide layer, which preserved the details for intact ultrastructural interface analysis. There was evidence of hemidesmosome-like structures at the interface on the four types of Ti surfaces, which suggests that the tissue-engineered oral mucosa formed epithelial attachments on the Ti surfaces. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2011.
  •  
6.
  •  
7.
  • Palmquist, Anders, 1977, et al. (författare)
  • Calcium Aluminate Coated and Uncoated Free Form Fabricated CoCr Implants : A Comparative Study in Rabbit
  • 2009
  • Ingår i: Journal of Biomedical Materials Research - Part B Applied Biomaterials. - : Wiley. - 1552-4973 .- 1552-4981. ; 91B:1, s. 122-127
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to compare the integration in bone of uncoated free form fabricated cobalt chromium (CoCr) implants to the same implant with a calcium aluminate coating. The implants of cylindrical design with a pyramidal surface structure were press-fit into the limbs of New Zealand white rabbits. After 6 weeks, the rabbits were sacrificed, and samples were retrieved and embedded. Ground sections were subjected to histological analysis and histomorphometry. The section counter part was used for preparing an electron transparent transmission electron microscopy sample by focused ion beam milling. Calcium aluminate dip coating provided a significantly greater degree of bone contact than that of the native CoCr. The gibbsite hydrate formed in the hardening reaction of the calcium aluminate was found to be the exclusive crystalline phase material in direct contact with bone.
  •  
8.
  •  
9.
  • Palmquist, Anders, 1977, et al. (författare)
  • Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: Experimental studies in sheep.
  • 2013
  • Ingår i: Journal of biomaterials applications. - : SAGE Publications. - 1530-8022 .- 0885-3282. ; 27:8, s. 1003-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of the present study was to evaluate the long-term osseointegration and biocompatibility of electron beam melted (EBM) free-form-fabricated (FFF titanium grade 5 (Ti6Al4V) implants. Porous and solid machined cylindrical and disk-shaped implants were prepared by EBM and implanted bilaterally in the femur and subcutaneously in the dorsum of the sheep. After 26 weeks, the implants and surrounding tissue were retrieved. The tissue response was examined qualitatively and quantitatively using histology and light microscopic (LM) morphometry. Selected bone implants specimens were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-computed tomography (mCT). The results showed that both porous and solid implants were osseointegrated and high bone-implant contact was observed throughout the porous implant. In the soft tissue, the porous implants showed thinner fibrous encapsulation while no signs of intolerance were observed for either implant type. Taken together, the present experimental results show that FFF Ti6Al4V with and without porous structures demonstrate excellent long-term soft tissue biocompatibility and a high degree of osseointegration. The present findings extend earlier, short-term experimental observations in bone and suggest that EBM, FFF Ti6Al4V implants possess valuable properties in bone and soft tissue applications.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy