SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David) ;pers:(Blomqvist Anders 1949)"

Sökning: WFRF:(Engblom David) > Blomqvist Anders 1949

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomqvist, Anders, 1949-, et al. (författare)
  • Neural Mechanisms of Inflammation-Induced Fever
  • 2018
  • Ingår i: The Neuroscientist. - : Sage Publications. - 1073-8584 .- 1089-4098. ; 24:4, s. 381-399
  • Forskningsöversikt (refereegranskat)abstract
    • Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E-2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E-2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E-2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E-2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
  •  
2.
  •  
3.
  • Engblom, David, 1975-, et al. (författare)
  • Activation of prostanoid EP3 and EP4 receptor mRNA-expressing neurons in the rat parabrachial nucleus by intravenous injection of bacterial wall lipopolysaccharide
  • 2001
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 440:4, s. 378-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation activates central autonomic circuits, such as neurons in the pontine parabrachial nucleus. This activation may be the result of afferent signaling through the vagus nerve, but it may also depend on central prostaglandin-mediated mechanisms. Recently, we have shown that neurons in the parts of the parabrachial nucleus that are activated by immune challenge express prostaglandin receptors of the EP3 and EP4 subtypes, but it remains to be determined if the prostaglandin receptor-expressing neurons are identical to those that respond to immune stimuli. In the present study, bacterial wall lipopolysaccharide was injected intravenously in adult male rats and the expression of c-fos mRNA and of EP3 and EP4 receptor mRNA was examined with complementary RNA probes labeled with digoxigenin and radioisotopes, respectively. Large numbers of neurons in the external lateral parabrachial subnucleus, a major target of vagal-solitary tract efferents, expressed c-fos mRNA. Quantitative analysis showed that about 60% (range 40%–79%) of these neurons also expressed EP3 receptor mRNA. Conversely, slightly more than 50% (range 48%–63%) of the EP3 receptor-expressing neurons in the same subnucleus coexpressed c-fos mRNA. In contrast, few EP4 receptor-expressing neurons were c-fos positive, with the exception of a small population located in the superior lateral and dorsal lateral subnuclei. These findings show that immune challenge activates central autonomic neurons that could be the target of centrally produced prostaglandin E2, suggesting that synaptic signaling and paracrine mechanisms may interact on these neurons. J. Comp. Neurol. 440:378–386, 2001. © 2001 Wiley-Liss, Inc.
  •  
4.
  • Engblom, David, 1975-, et al. (författare)
  • EP3 and EP4 receptor mRNA expression in peptidergic cell groups of the rat parabrachial nucleus
  • 2004
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 126:4, s. 989-999
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examines the distribution of prostaglandin E2 receptors of subtype EP3 and EP4 among brain stem parabrachial neurons that were characterized with respect to their neuropeptide expression. By using a dual-labeling in situ hybridization method, we show that preprodynorphin mRNA expressing neurons in the dorsal and central lateral subnuclei express EP3 receptor mRNA. Such receptors are also expressed in preproenkephalin, calcitonin gene related peptide and preprotachykinin mRNA positive neurons in the external lateral subnucleus, whereas preprodynorphin mRNA expressing neurons in this subnucleus are EP receptor negative. In addition, EP3 receptor expression is seen among some enkephalinergic neurons in the Kölliker-Fuse nucleus. Neurons in the central part of the cholecystokininergic population in the regions of the superior lateral subnucleus express EP4 receptor mRNA, whereas those located more peripherally express EP3 receptors. Taken together with previous findings showing that discrete peptidergic cell groups mediate nociceptive and/or visceral afferent information to distinct brain stem and forebrain regions, the present results suggest that the processing of this information in the parabrachial nucleus is influenced by prostaglandin E2. Recent work has shown that prostaglandin E2 is released into the brain following peripheral immune challenge; hence, the parabrachial nucleus may be a region where humoral signaling of peripheral inflammatory events may interact with neuronal signaling elicited by the same peripheral processes.
  •  
5.
  • Engblom, David, 1975-, et al. (författare)
  • Induction of microsomal prostaglandin E synthase in the rat brain endothelium and parenchyma in adjuvant-induced arthritis
  • 2002
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 452:3, s. 205-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Although central nervous symptoms such as hyperalgesia, fatigue, malaise, and anorexia constitute major problems in the treatment of patients suffering from chronic inflammatory disease, little has been known about the signaling mechanisms by which the brain is activated during such conditions. Here, in an animal model of rheumatoid arthritis, we show that microsomal prostaglandin E-synthase, the inducible terminal isomerase in the prostaglandin E2-synthesizing pathway, is expressed in endothelial cells along the blood-brain barrier and in the parenchyma of the paraventricular hypothalamic nucleus. The endothelial cells but not the paraventricular hypothalamic cells displayed a concomitant induction of cyclooxygenase-2 and expressed interleukin-1 type 1 receptors, which indicates that the induction is due to peripherally released cytokines. In contrast to cyclooxygenase-2, microsomal prostaglandin E synthase had very sparse constitutive expression, suggesting that it could be a target for developing drugs that will carry fewer side effects than the presently available cyclooxygenase inhibitors. These findings, thus, suggest that immune-to-brain communication during chronic inflammatory conditions involves prostaglandin E2-synthesis both along the blood-brain barrier and in the parenchyma of the hypothalamic paraventricular nucleus and point to novel avenues for the treatment of the brain-elicited disease symptoms during these conditions.
  •  
6.
  • Engblom, David, 1975-, et al. (författare)
  • Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis
  • 2003
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 6:11, s. 1137-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the febrile response in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal isomerase expressed in cytokine-sensitive brain endothelial cells. These animals showed no fever and no central prostaglandin (PG) E2 synthesis after peripheral injection of bacterial-wall lipopolysaccharide, but their pyretic capacity in response to centrally administered PGE2 was intact. Our findings identify mPGES-1 as the central switch during immune-induced pyresis and as a target for the treatment of fever and other PGE2-dependent acute phase reactions elicited by the brain.
  •  
7.
  • Engblom, David, 1975-, et al. (författare)
  • Prostaglandins as inflammatory messengers across the blood-brain barrier
  • 2002
  • Ingår i: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 80:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon immune challenge the brain launches a wide range of responses, such as fever, anorexia, and hyperalgesia that serve to maintain homeostasis. While these responses are adaptive during acute infections, they may be destructive during chronic inflammatory conditions. Research performed during the last decade has given us insight into how the brain monitors the presence of a peripheral inflammation and the mechanisms underlying the brain-mediated acute-phase reactions. Here we give a brief review on this subject, with focus on the role of prostaglandin E2 produced in cells associated with the blood-brain barrier in immune-to-brain signaling. The recent advances in this field have not only elucidated the mechanisms behind the anti-pyretic and anti-hyperalgesic effects of cyclooxygenase inhibitors, but have also identified novel and more-selective potential drug targets.
  •  
8.
  •  
9.
  • Klawonn, Anna, 1985- (författare)
  • Molecular Mechanisms of Reward and Aversion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Various molecular pathways in the brain shape our understanding of good and bad, as well as our motivation to seek and avoid such stimuli. This work evolves around how systemic inflammation causes aversion; and why general unpleasant states such as sickness, stress, pain and nausea are encoded by our brain as undesirable; and contrary to these questions, how drugs of abuse can subjugate the motivational neurocircuitry of the brain. A common feature of these various disease states is involvement of the motivational neurocircuitry - from mesolimbic to striatonigral pathways. Having an intact motivational system is what helps us evade negative outcomes and approach natural positive reinforcers, which is essential for our survival. During disease-states the motivational neurocircuitry may be overthrown by the molecular mechanisms that originally were meant to aid us.In study I, to investigate how inflammation is perceived as aversive, we used a behavioral test based on Pavlovian place conditioning with the aversive inflammatory stimulus E. coli lipopolysaccharide (LPS). Using a combination of cell-type specific gene deletions, pharmacology, and chemogenetics, we uncovered that systemic inflammation triggered aversion by MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Moreover, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, inflammation-induced aversion was not an indirect consequence of fever or anorexia but constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic circuitry is a key mechanism underlying inflammation-induced aversion.In study II, we investigate the role of peripheral IFN-γ in LPS induced conditioned place aversion by employing a strategy based on global and cell-type specific gene deletions, combined with measures of gene-expression. LPS induced IFN-ɣ expression in the blood, and deletion of IFN-ɣ or its receptor prevented conditioned place aversion (CPA) to LPS. LPS increased the expression of chemokine Cxcl10 in the striatum of normal mice. This induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion. Collectively, these findings demonstrate that circulating IFN-ɣ binding to receptors on brain endothelial cells which induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.In study III, we explored the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice in CPA to various stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain and kappa opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference towards most of the aversive stimuli, but were indifferent to pain. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine-dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were re-expressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in a MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.The neurotransmitter acetylcholine has been implied in reward learning and drug addiction. However, the role of cholinergic receptor subtypes in such processes remains elusive. In study IV we investigated the function of muscarinic M4Rs on dopamine D1R expressing neurons and acetylcholinergic neurons, using transgenic mice in various reward-enforced behaviors and in a “waiting”-impulsivity test. Mice lacking M4-receptors from D1-receptor expressing neurons exhibited an escalated reward seeking phenotype towards cocaine and natural reward, in Pavlovian conditioning and an operant self-administration task, respectively. In addition, the M4-D1RCre mice showed impaired waiting impulsivity in the 5-choice-serial-reaction-time-task. On the contrary, mice without M4Rs in acetylcholinergic neurons were unable to learn positive reinforcement to natural reward and cocaine, in an operant runway paradigm and in Pavlovian conditioning.  Immediate early gene expression mirrored the behavioral findings arising from M4R-D1R knockout, as cocaine induced cFos and FosB was significantly increased in the forebrain of M4-D1RCre mice, whereas it remained normal in the M4R-ChatCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality.
  •  
10.
  • Klawonn, Anna, 1985-, et al. (författare)
  • Motivational valence is determined by striatal melanocortin 4 receptors
  • 2018
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 128:7, s. 3160-3170
  • Tidskriftsartikel (refereegranskat)abstract
    • It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and. opioid receptorinduced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (16)
doktorsavhandling (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Engblom, David, 1975 ... (16)
Ericsson-Dahlstrand, ... (6)
Ek, Monica (5)
Jakobsson, Per-Johan (5)
Shionoya, Kiseko, 19 ... (5)
visa fler...
Saha, Sipra (4)
Mirrasekhian, Elahe, ... (4)
Nilsson, Anna (2)
Klawonn, Anna, 1985- (2)
Jaarola, Maarit, 195 ... (2)
Blomqvist, Anders, P ... (2)
Nilsson, Anna, 1984- (2)
Zygmunt, Peter M. (1)
Högestätt, Edward D. (1)
Andersson, Ingela (1)
Hallbeck, Martin, 19 ... (1)
Engström-Ruud, Linda (1)
Wilhelms, Daniel (1)
Mueller, Werner (1)
Blomgren, Anders (1)
Waisman, Ari (1)
Hammarström, Sven, 1 ... (1)
Söderström, Mats, 19 ... (1)
Engblom, David (1)
Elander, Louise (1)
Schwaninger, Markus (1)
Petkovic, Filip (1)
Granseth, Björn, 197 ... (1)
Engström, Linda, 197 ... (1)
Dahlström, Marie (1)
Westman, Marie (1)
Audoly, Laurent (1)
Eskilsson, Anna, 198 ... (1)
Matsuwaki, Takashi, ... (1)
Dufour, Sylvie (1)
Engblom, David, Prof ... (1)
Fritz, Michael, 1981 ... (1)
Karlsson, Urban, 196 ... (1)
Engblom, David, Asso ... (1)
Kenny, Paul, Profess ... (1)
Bonaventura, Jordi (1)
Michaelides, Michael (1)
Lazzarino, Gisela (1)
Ihnatko, Robert, PhD ... (1)
Kakuta, Shigeru (1)
Pinteaux, Emmanuel (1)
Mohseni, Simin, Asso ... (1)
Deierborg, Tomas, Pr ... (1)
Nilsson, Johan L.A. (1)
visa färre...
Lärosäte
Linköpings universitet (19)
Karolinska Institutet (6)
Göteborgs universitet (1)
Lunds universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy