SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David) ;pers:(Jaarola Maarit)"

Sökning: WFRF:(Engblom David) > Jaarola Maarit

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fritz, Michael, 1981-, et al. (författare)
  • Interferon-ɣ mediated signaling in the brain endothelium is critical for inflammation-induced aversion
  • 2018
  • Ingår i: Brain, behavior, and immunity. - Maryland Heights : Academic Press. - 0889-1591 .- 1090-2139. ; 67, s. 54-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation elicits malaise and a negative affective state. The mechanism underpinning the aversive component of inflammation include cerebral prostaglandin synthesis and modulation of dopaminergic reward circuits, but the messengers that mediate the signaling between the peripheral inflammation and the brain have not been sufficiently characterized. Here we investigated the role of interferon-ɣ (IFN-ɣ) in the aversive response to systemic inflammation induced by a low dose (10μg/kg) of lipopolysaccharide (LPS) in mice. LPS induced IFN-ɣ expression in the blood and deletion of IFN-ɣ or its receptor prevented the development of conditioned place aversion to LPS. LPS induced expression of the chemokine Cxcl10 in the striatum of normal mice, but this induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion, demonstrating that the brain endothelium is the critical site of IFN-ɣ action. Collectively, these findings show that circulating IFN-ɣ that binds to receptors on brain endothelial cells and induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.
  •  
2.
  • Fritz, Michael, et al. (författare)
  • Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice
  • 2016
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 126:2, s. 695-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type-specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E-2 (PGE(2)) synthesis. Further, we showed that inflammation-induced PGE(2) targeted EP1 receptors on striatal dopamine D1 receptor-expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE(2)-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation.
  •  
3.
  • Klawonn, Anna, et al. (författare)
  • Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons
  • 2021
  • Ingår i: Immunity. - : CELL PRESS. - 1074-7613 .- 1097-4180. ; 54:2, s. 225-234.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.
  •  
4.
  • Klawonn, Anna, 1985-, et al. (författare)
  • Motivational valence is determined by striatal melanocortin 4 receptors
  • 2018
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 128:7, s. 3160-3170
  • Tidskriftsartikel (refereegranskat)abstract
    • It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and. opioid receptorinduced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.
  •  
5.
  • Klawonn, Anna, et al. (författare)
  • Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity
  • 2018
  • Ingår i: Frontiers in Molecular Neuroscience. - : FRONTIERS MEDIA SA. - 1662-5099. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression (cFos and FosB) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.
  •  
6.
  • Nilsson, Anna, et al. (författare)
  • Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent.
  • 2017
  • Ingår i: Brain, behavior, and immunity. - : Elsevier. - 0889-1591 .- 1090-2139. ; 61, s. 236-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.
  •  
7.
  • Singh, Anand Kumar, et al. (författare)
  • Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain
  • 2017
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 127:4, s. 1370-1374
  • Tidskriftsartikel (refereegranskat)abstract
    • Pain is fundamentally unpleasant and induces a negative affective state. The affective component of pain is mediated by circuits that are distinct from those mediating the sensory-discriminative component. Here, we have investigated the role of prostaglandins in the affective dimension of pain using a rodent pain assay based on conditioned place aversion to formalin injection, an inflammatory noxious stimulus. We found that place aversion induced by inflammatory pain depends on prostaglandin E-2 that is synthesized by cyclooxygenase 2 in neural cells. Further, mice lacking the prostaglandin E-2 receptor EP3 selectively on serotonergic cells or selectively in the area of the dorsal raphe nucleus failed to form an aversion to formalininduced pain, as did mice lacking the serotonin transporter. Chemogenetic manipulations revealed that EP3 receptor activation elicited conditioned place aversion to pain via inhibition of serotonergic neurons. In contrast to their role in inflammatory pain aversion, EP3 receptors on serotonergic cells were dispensable for acute nociceptive behaviors and for aversion induced by thermal pain or a kappa opioid receptor agonist. Collectively, our findings show that prostaglandin-mediated modulation of serotonergic transmission controls the affective component of inflammatory pain.
  •  
8.
  • Zajdel, Joanna, et al. (författare)
  • Calcitonin gene related peptide alpha is dispensable for many danger-related motivational responses
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcitonin gene related peptide (CGRP) expressing neurons in the parabrachial nucleus have been shown to encode danger. Through projections to the amygdala and other forebrain structures, they regulate food intake and trigger adaptive behaviors in response to threats like inflammation, intoxication, tumors and pain. Despite the fact that this danger-encoding neuronal population has been defined based on its CGRP expression, it is not clear if CGRP is critical for its function. It is also not clear if CGRP in other neuronal structures is involved in danger-encoding. To examine the role of CGRP in danger-related motivational responses, we used male and female mice lacking alpha CGRP, which is the main form of CGRP in the brain. These mice had no, or only very weak, CGRP expression. Despite this, they did not behave differently compared to wildtype mice when they were tested for a battery of danger-related responses known to be mediated by CGRP neurons in the parabrachial nucleus. Mice lacking alpha CGRP and wildtype mice showed similar inflammation-induced anorexia, conditioned taste aversion, aversion to thermal pain and pain-induced escape behavior, although it should be pointed out that the study was not powered to detect any possible differences that were minor or sex-specific. Collectively, our findings suggest that alpha CGRP is not necessary for many threat-related responses, including some that are known to be mediated by CGRP neurons in the parabrachial nucleus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy