SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engblom David) ;pers:(Jablonowski Robert)"

Sökning: WFRF:(Engblom David) > Jablonowski Robert

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jablonowski, Robert, et al. (författare)
  • Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo.
  • 2013
  • Ingår i: BMC Cardiovascular Disorders. - : Springer Science and Business Media LLC. - 1471-2261. ; 13:Dec 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular-MR (CMR) is the gold standard for quantifying myocardial infarction using late gadolinium enhancement (LGE) technique. Both 2D- and 3D-LGE-sequences are used in clinical practise and in clinical and experimental studies for infarct quantification. Therefore the aim of this study was to investigate if image acquisitions with 2D- and 3D-LGE show the same infarct size in patients and ex vivo.
  •  
3.
  • Jablonowski, Robert, et al. (författare)
  • The Authors Reply
  • 2016
  • Ingår i: JACC: Cardiovascular Imaging. - : Elsevier BV. - 1876-7591 .- 1936-878X. ; 9:8, s. 7-1016
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Lav, Theodor, et al. (författare)
  • Non-invasive pressure volume loops derived by cardiovascular magnetic resonance: association between area at risk or infarct size and cardiac hemodynamics at 2-6 days after myocardial infarction
  • 2023
  • Konferensbidrag (refereegranskat)abstract
    • BackgroundA novel non-invasive method for generation of pressure volume loops (PV-loops) using brachial blood pressure and cardiovascular magnetic resonance (CMR) imaging has recently been presented and validated (1). The non-invasive nature of this method enables calculation of PV-loops in large patient cohorts previously not feasible due to the need of invasive measurements.PurposeThe purpose of the present study was to investigate how cardiac hemodynamics assessed by PV-loop variables such as stroke work, potential energy, contractility and ventriculoarterial coupling is related to myocardium at risk and infarct size in a cohort of patients with acute myocardial infarction (MI).MethodA total of 100 patients with ST-elevation MI (STEMI) were included from the SOCCER, MITOCARE and CHILL-MI trials (2-4). The CHILL-MI cohort (n = 11) was prone to a stricter selection criterion than the SOCCER cohort, including first-time myocardial infarction and no comorbidities. All patients underwent a CMR examination at 2-6 days after MI. Non-invasive PV-loops were generated by combining volumetric CMR data and brachial sphygmomanometric pressure measurements using a recently validated method (1). Maximal elastance (Emax, translated to contractility), stroke work, potential energy and ventriculoarterial coupling (Ea/Emax) were measured from the PV-loops. Myocardium at risk and infarct size were assessed using contrast-enhanced steady state free precession and late gadolinium enhancement images, respectively.ResultsContractility, ventriculoarterial coupling, stroke work and potential energy all correlated to myocardium at risk (Emax: r²=0.25, Ea/Emax: r²=0.36, stroke work: r²=0.21, potential energy: r²=0.10) and infarct size (Emax: r²=0.29, Ea/Emax: r²=0.41, stroke work: r²=0.25, potential energy: r²=0.15) as shown in Figure 1. Furthermore, contractility showed a stronger correlation to myocardium at risk (Emax: r²=0.77) than to infarct size (Emax: r²=0.37) for the CHILL-MI patients as shown in Figure 2.ConclusionNon-invasive CMR derived PV-loop parameters can be used to assess cardiac hemodynamics early after STEMI showing that increased myocardium at risk and infarct size are both associated with an increased ventriculoarterial coupling and potential energy, and a decreased contractility and stroke work. To what extent these hemodynamic parameters provide incremental prognostic information compared to conventional parameters such as ejection fraction and left ventricular dimensions after STEMI remains to be determined.
  •  
8.
  • Nordlund, David, et al. (författare)
  • Contractility, ventriculoarterial coupling, and stroke work after acute myocardial infarction using CMR-derived pressure-volume loop data
  • 2024
  • Ingår i: Clinical Cardiology. - 0160-9289. ; 47:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Noninvasive left ventricular (LV) pressure-volume (PV) loops derived by cardiac magnetic resonance (CMR) have recently been shown to enable characterization of cardiac hemodynamics. Thus, such PV loops could potentially provide additional diagnostic information such as contractility, arterial elastance (Ea) and stroke work (SW) currently not available in clinical routine. This study sought to investigate to what extent PV-loop variables derived with a novel noninvasive method can provide incremental physiological information over cardiac dimensions and blood pressure in patients with acute myocardial infarction (MI). Methods: A total of 100 patients with acute MI and 75 controls were included in the study. All patients underwent CMR 2?6 days after MI including assessment of myocardium at risk (MaR) and infarct size (IS). Noninvasive PV loops were generated from CMR derived LV volumes and brachial blood pressure measurements. The following variables were quantified: Maximal elastance (Emax) reflecting contractility, Ea, ventriculoarterial coupling (Ea/Emax), SW, potential energy, external power, energy per ejected volume, and efficiency. Results: All PV-loop variables were significantly different in MI patients compared to healthy volunteers, including contractility (Emax: 1.34?±?0.48 versus 1.50?±?0.41?mmHg/mL, p?=?.024), ventriculoarterial coupling (Ea/Emax: 1.27?±?0.61 versus 0.73?±?0.17, p?
  •  
9.
  • Nordlund, David, et al. (författare)
  • Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction
  • 2017
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accurate assessment of myocardium at risk (MaR) after acute myocardial infarction (AMI) is necessary when assessing myocardial salvage. Contrast-enhanced steady-state free precession (CE-SSFP) is a recently developed cardiovascular magnetic resonance (CMR) method for assessment of MaR up to 1 week after AMI. Our aim was to validate CE-SSFP for determination of MaR in an experimental porcine model using myocardial perfusion single-photon emission computed tomography (MPS) as a reference standard and to test the stability of MaR-quantification over time after injecting gadolinium-based contrast. Methods: Eleven pigs were subjected to either 35 or 40 min occlusion of the left anterior descending artery followed by six hours of reperfusion. A technetium-based perfusion tracer was administered intravenously ten minutes before reperfusion. In-vivo and ex-vivo CE-SSFP CMR was performed followed by ex-vivo MPS imaging. MaR was expressed as % of left ventricular mass (LVM). Results: There was good agreement between MaR by ex-vivo CMR and MaR by MPS (bias: 1 ± 3% LVM, r 2 = 0.92, p < 0.001), between ex-vivo and in-vivo CMR (bias 0 ± 2% LVM, r 2 = 0.94, p < 0.001) and between in-vivo CMR and MPS (bias -2 ± 3% LVM, r 2 = 0.87, p < 0.001. No change in MaR was seen over the first 30 min after contrast injection (p = 0.95). Conclusions: Contrast-enhanced SSFP cine CMR can be used to measure MaR, both in vivo and ex vivo, in a porcine model with good accuracy and precision over the first 30 min after contrast injection. This offers the option to use the less complex ex-vivo imaging when determining myocardial salvage in experimental studies.
  •  
10.
  • Axelsson, Jimmy, et al. (författare)
  • Ejection fraction in left bundle branch block is disproportionately reduced in relation to amount of myocardial scar
  • 2018
  • Ingår i: Journal of Electrocardiology. - : Elsevier BV. - 0022-0736 .- 1532-8430. ; 51:6, s. 1071-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The relationship between left ventricular (LV) ejection fraction (EF) and LV myocardial scar can identify potentially reversible causes of LV dysfunction. Left bundle branch block (LBBB) alters the electrical and mechanical activation of the LV. We hypothesized that the relationship between LVEF and scar extent is different in LBBB compared to controls. Methods: We compared the relationship between LVEF and scar burden between patients with LBBB and scar (n = 83), and patients with chronic ischemic heart disease and scar but no electrocardiographic conduction abnormality (controls, n = 90), who had undergone cardiovascular magnetic resonance (CMR) imaging at one of three centers. LVEF (%) was measured in CMR cine images. Scar burden was quantified by CMR late gadolinium enhancement (LGE) and expressed as % of LV mass (%LVM). Maximum possible LVEF (LVEFmax) was defined as the function describing the hypotenuse in the LVEF versus myocardial scar extent scatter plot. Dysfunction index was defined as LVEFmax derived from the control cohort minus the measured LVEF. Results: Compared to controls with scar, LBBB with scar had a lower LVEF (median [interquartile range] 27 [19–38] vs 36 [25–50] %, p < 0.001), smaller scar (4 [1–9] vs 11 [6–20] %LVM, p < 0.001), and greater dysfunction index (39 [30–52] vs 21 [12–35] % points, p < 0.001). Conclusions: Among LBBB patients referred for CMR, LVEF is disproportionately reduced in relation to the amount of scar. Dyssynchrony in LBBB may thus impair compensation for loss of contractile myocardium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy