SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ericsson Göran) srt2:(2020-2022);pers:(Eriksson Jacob Dr 1985)"

Search: WFRF:(Ericsson Göran) > (2020-2022) > Eriksson Jacob Dr 1985

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cecconello, Marco, et al. (author)
  • Conceptual design of a collimated neutron flux monitor and spectrometer for DTT
  • 2021
  • In: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 167
  • Journal article (peer-reviewed)abstract
    • A conceptual design and performance studies for a collimated neutron flux monitor and neutron spectrometer for the Divertor Tokamak Test (DTT) facility are presented. This study is based on the single-null divertor configuration and for “Half Power” and “Full power” scenarios with 15 MW of negative-ion NBI, 29 MW of ECH and 3 MW of ICRF heating with a maximum neutron yield of 1.5 × 1017 s−1. Fast ion distributions (both from auxiliary heating systems and fusion born) have been simulated in TRANSP/NUBEAM and the corresponding neutron energy spectra have been calculated using DRESS. Synthetic diagnostics have been implemented to determine the neutron fluxes and spectra at the detector location. Neutron emissivity profiles, plasma position, core ion temperature and the ratio of thermal and non-thermal D ion populations can be obtained with good accuracy and time resolution.
  •  
2.
  • Eriksson, Benjamin, et al. (author)
  • Determining the fuel ion ratio for D(T)and T(D) plasmas at JET using neutron time-of-flight spectrometry
  • 2022
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics (IOP). - 0741-3335 .- 1361-6587. ; 64
  • Journal article (peer-reviewed)abstract
    • The fusion fuel ion ratio, nΤ/nD, is an important plasma parameter that needs to be tuned to maximize the power of a tokamak type fusion reactor. It is recognized as a parameter required for optimizing several ITER operating scenarios, and will likely be continuously monitored in future high-performance fusion devices such as DEMO. Tritium was recently introduced in the Joint European Torus (JET) plasma for the first time since the 1997 DTE1 and 2003 TTE campaigns, enabling the possibility to investigate fuel ion ratios. We present a method for measuring nΤ/nD using neutron time-of-flight (TOF) spectrometry. By fitting the measured neutron spectral features, the relative reaction rate intensities between different ion species can be inferred, from which the fuel ion ratio can be extracted for a corresponding modeled reactivity. Unlike previous measurements of nT/nD using neutron spectrometry, we utilize the neutron energy continuum produced in the three-body TT reaction to determine the fuel ion ratio for plasmas with large concentrations of tritium. Furthermore, the use of neutron TOF spectrometry has never previously been demonstrated for evaluating nT/nD. The method is applied to TOF spectra acquired with TOFOR (JET name KM11) and shown to be consistent with the optical JET diagnostic KT5P which uses optical spectroscopy of a modified Penning gauge plasma to measure tritium and deuterium concentrations in the divertor exhaust gas.
  •  
3.
  • Eriksson, Benjamin, et al. (author)
  • New method for time alignment and time calibration of the TOFOR time-of-flight neutron spectrometer at JET
  • 2021
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:3
  • Journal article (peer-reviewed)abstract
    • The TOFOR time-of-flight (TOF) neutron spectrometer at the Joint European Torus (JET) is composed of 5 start (S1) and 32 stop (S2) scintillation detectors. Recently, the data acquisition system (DAQ) of TOFOR was upgraded to equip each of the 37 detectors with its own waveform digitizer to allow for correlated time and pulse height analysis of the acquired data. Due to varying cable lengths and different pulse processing pathways in the new DAQ system, the 160 (5.32) different TOF pairs of start-stop detectors must be time-aligned to enable the proper construction of a summed TOF spectrum. Given the time (energy) resolution required by the entire spectrometer system to measure different plasma neutron emission components, it is of importance to align the detector pairs to each other with sub-nanosecond precision. Previously, the alignment partially depended on using fusion neutron data from Ohmic heating phases of JET experimental pulses. The dependence on fusion neutron data in the time alignment process is, however, unsatisfactory as it involves data one would wish to include in an independent analysis for physics results. In this work, we describe a method of time-aligning the detector pairs by using gamma rays. Given the known geometry and response of TOFOR to gamma rays, the time alignment of the detector pairs is found by examining gamma events interacting in coincidence in both S1-S1 and S1-S2 detector combinations. Furthermore, a technique for separating neutron and gamma events in the different detector sets is presented. Finally, the time-aligned system is used to analyze neutron data from Ohmic phases for different plasma conditions and to estimate the Ohmic fuel ion temperature.
  •  
4.
  • Marcinkevicius, Benjaminas, et al. (author)
  • Fuel ion ratio determination using the 14 MeV Tandem neutron spectrometer for JET DTE1 campaign discharges
  • 2022
  • In: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 184
  • Journal article (peer-reviewed)abstract
    • This paper investigates the determination of the fuel ion ratio nT/ntot in fusion experiments using two different approaches. The methods are applied to plasma discharges from the deuterium-tritium campaign at the Joint European Torus (JET) in 1997. Multiple discharges have been analysed using data acquired with the Tandem (KM2) neutron spectrometer, using a new neutron spectrometer response function and improved line-of-sight information.The two different approaches were generally similar with the exception of the beam slowing down modelling, handled by two different particle transport codes, namely, TRANSP and PENCIL.The results show that nT/ntot can be determined using Tandem neutron spectrometer data; nT/ntot using both of the approaches are consistent and within the uncertainty for a range of studied discharges.The obtained results support previous studies on nT/ntot determination using neutron spectroscopy. In addition, we have shown that PENCIL can be used instead of TRANSP for a range of discharges which could simplify and speed up the estimation of nT/ntot. The possible limitations of the approach using PENCIL could be investigated using different neutron spectrometer data from the 2021 JET deuterium-tritium campaign.A similar spectrometer like Tandem is planned to be operational at ITER and the results of this paper form the first experimental verification of the capability for nT/ntot measurements with such spectrometers. Further research on this could lead to better understanding of these instruments and their limitations before the start of experiments at ITER.
  •  
5.
  •  
6.
  • Sahlberg, Arne, et al. (author)
  • Forward modeling of pile-up events in liquid scintillator detectors for neutron emission spectroscopy
  • 2021
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 92:8
  • Journal article (peer-reviewed)abstract
    • When using liquid scintillator detectors to measure the neutron emission spectrum from fusion plasmas, the problem of pile-up distortion can be significant. Because of the large neutron rates encountered in many fusion experiments, some pile-up distortion can remain even after applying traditional pile-up elimination methods, which alters the shape of the measured light-yield spectrum and influences the spectroscopic analysis. Particularly, pile-up events appear as a high-energy tail in the measured light-yield spectrum, which obfuscates the contribution that supra-thermal ions make to the energy spectrum. It is important to understand the behavior of such “fast ions” in fusion plasmas, and it is hence desirable to be able to measure their contribution to the neutron spectrum as accurately as possible. This paper presents a technique for incorporating distortion from undetected pile-up events into the analysis of the light-yield spectrum, hence compensating for pile-up distortion. The spectral contribution from undetected pile-up events is determined using Monte Carlo methods and is included in the spectroscopic study as a pile-up component. The method is applied to data from an NE213 scintillator detector at JET and validated by comparing with results from the time-of-flight spectrometer TOFOR, which is not susceptible to pile-up distortion. Based on the results, we conclude that the suggested analysis method helps counteract the problem of pile-up effects and improves the possibilities for extracting accurate fast-ion information from the light-yield spectrum.
  •  
7.
  • Sahlberg, Arne (author)
  • Multi-sightline neutron emission spectroscopy of D and T fusion plasmas at JET
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • An analysis of the neutron emission from a fusion plasma can be used to determine plasma properties and diagnose fusion performance. In this thesis, several analysis methods for neutron spectroscopy are presented and applied to data from the experimental fusion device JET. JET has numerous instruments for neutron measurements installed, and data from several of them are used in this thesis.The work presented here describes how various plasma parameters affect the neutron emission and how this information can be used to determine properties of the fusion plasma. Forward fitting of models parameterized in terms of the relevant plasma properties are a central part of most of the analysis methods and are used to determine key features of supra-thermal (“fast”) ion distributions for prediction of plasma performance in deuterium-tritium (d-t) experiments, and to determine the branching ratio for the formation of a short-lived 5He resonance in t+t reactions. The thesis also includes work concerning uncertainty quantification of the modeling of the neutron emission rate and the calculation of pile-up distortion of light-yield spectra from liquid scintillator detectors.A major contribution of this thesis is the novel methods for measuring properties of a fast-ion distribution using neutron spectroscopy with multiple sightlines. The combination of data from instruments viewing different parts of the plasma and/or with different viewing angles permits us to study fast-ion behavior in a more consistent and detailed fashion than if we analyze each measurement separately. Another interesting result is the first-ever observation of the neutron spectrum from t+t reactions in a magnetically confined fusion plasma, from which we can learn important things about the t+t reaction in reactor relevant conditions.
  •  
8.
  • Sahlberg, Arne, et al. (author)
  • Spatially resolved measurements of RF accelerated deuterons at JET
  • 2021
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 61:3
  • Journal article (peer-reviewed)abstract
    • An understanding of fast (supra-thermal) ion behavior is of great importance in tokamak physics and is a subject studied from both theoretical and experimental perspectives. This paper investigates the spatial energy and density distributions of RF accelerated deuterons using the neutron camera at the tokamak JET. Using the 19 liquid scintillator detectors available in the neutron camera system, we obtain spatial information that cannot be accessed with a single sightline. We present a spectroscopic analysis method in which a spatially resolved model of the fast ion distribution is fitted to the pulse height spectra from all 19 detectors simultaneously. The fast ion distribution is parameterized in such a way that the density, energy, and pitch-angle parts are uncoupled. The energy part is composed of a Maxwellian distribution, characterized by an 'RF tail temperature,' and the spatial dependence is modeled as a two-dimensional Gaussian distribution on the poloidal plane of the tokamak. From this parameterized model, we can calculate the spectrum of fusion born neutrons originating from reactions involving RF accelerated deuterons, and by fitting this model to the measured neutron camera pulse height spectra, we obtain an estimate of the spatially resolved distribution of the fast deuterons. The method has been applied to three JET pulses using different RF heating schemes and is shown to identify several features of the fast ion distribution produced in the various scenarios. Hence, this method is able to provide quantitative information about the fast ion distribution resulting from different heating schemes, and can also be useful, e.g., to validate simulation results from RF modeling codes.
  •  
9.
  • Tardocchi, M., et al. (author)
  • High rate neutron and gamma ray spectroscopy of magnetic confinement fusion plasmas
  • 2020
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15
  • Journal article (peer-reviewed)abstract
    • An important instrumental development work has been done in the last two decades in the field of neutron and gamma ray spectroscopic measurements of magnetic confinement plasmas. Starting from the present state of the art instrumentation installed at JET, this paper reviews the recent development that has been carried out within the EUROFUSION programme for the forthcoming high power JET D and DT campaign. This development was dedicated to the realization of new compact neutron and gamma-ray spectrometers which combine very high energy resolution (typically better than 5%) and MHz counting rate capabilities allowing for time resolution in the 10 ms time scale. One of the advantages offered by the compact dimensions of these spectrometers is to make possible their use in multiple sight-line camera configurations, such as for future burning plasma reactors (ITER and DEMO). New compact neutron spectrometers based on single crystal diamond detectors have been developed and installed at JET for measurements of the 14MeV neutron spectrum. Measurements on a portable DT neutron generator have shown that neutron spectroscopy of the accelerated beam ions at unprecedented energy resolution (similar to 1% at 14 MeV) is possible, which opens up new opportunities for diagnosing DT plasmas. For what concerns gamma ray measurements, the JET gamma ray camera has been recently upgraded with new compact spectrometers based on a LaBr3 scintillator coupled to Silicon Photomultiplier with the dual aim to improve the spectroscopic and rate capabilities of the detectors. The upgrade camera system will reconstruct the spatial gamma ray emissivity from the plasma in the MeV energy range at MHz counting rates and energy resolution in the 2-4% range. This will allow physics studies of gamma rays produced by the interaction of fast ions with impurities in the plasma and bremsstrahlung emission from runaway electrons.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view