SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson Jacob Dr 1985 ) "

Sökning: WFRF:(Eriksson Jacob Dr 1985 )

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Eriksson, F., et al. (författare)
  • Impact of fast ions on density peaking in JET : fluid and gyrokinetic modeling
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile.
  •  
3.
  • Eriksson, F., et al. (författare)
  • Interpretative and predictive modelling of Joint European Torus collisionality scans
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.
  •  
4.
  • Maggi, C. F., et al. (författare)
  • Isotope identity experiments in JET-ILW with H and D L-mode plasmas
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, rho*, nu*, beta and q in the plasma core confinement region and same T-i/T-e and Z(eff). The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, Omega(i) tau(E,th), and the scaled core plasma heat diffusivity, A chi(eff)/B-T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E x B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.
  •  
5.
  • Wilkie, G. J., et al. (författare)
  • First principles of modelling the stabilization of microturbulence by fast ions
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation that fast ions stabilize ion-temperature-gradient-driven microturbulence has profound implications for future fusion reactors. It is also important in optimizing the performance of present-day devices. In this work, we examine in detail the phenomenology of fast ion stabilization and present a reduced model which describes this effect. This model is derived from the high-energy limit of the gyrokinetic equation and extends the existing 'dilution' model to account for nontrivial fast ion kinetics. Our model provides a physically-transparent explanation for the observed stabilization and makes several key qualitative predictions. Firstly, that different classes of fast ions, depending on their radial density or temperature variation, have different stabilizing properties. Secondly, that zonal flows are an important ingredient in this effect precisely because the fast ion zonal response is negligible. Finally, that in the limit of highly-energetic fast ions, their response approaches that of the 'dilution' model; in particular, alpha particles are expected to have little, if any, stabilizing effect on plasma turbulence. We support these conclusions through detailed linear and nonlinear gyrokinetic simulations.
  •  
6.
  • Aho-Mantila, L., et al. (författare)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
7.
  • Aiba, N., et al. (författare)
  • Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics (IOP). - 0741-3335 .- 1361-6587. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.
  •  
8.
  • Aiba, N., et al. (författare)
  • Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET
  • 2017
  • Ingår i: Nuclear Fusion. - EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Aiba, N.] Natl Inst Quantum & Radiol Sci & Technol, Rokkasho, Aomori 0393212, Japan. [Giroud, C.; Saarelma, S.; Lupelli, I.; Casson, F. J.; Pamela, S.; Maggi, C. F.] Culham Ctr Fus Energy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Honda, M.; Urano, H.] Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan. [Delabie, E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Frassinetti, L.] KTH, Div Fus Plasma Phys, SE-10041 Stockholm, Sweden. : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.
  •  
9.
  • Angioni, C., et al. (författare)
  • Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
  •  
10.
  • Angioni, C., et al. (författare)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (381)
forskningsöversikt (6)
konferensbidrag (3)
Typ av innehåll
refereegranskat (390)
Författare/redaktör
Eriksson, Jacob, Dr, ... (390)
Zychor, I (376)
Conroy, Sean (374)
Ericsson, Göran (371)
Hjalmarsson, Anders (370)
Andersson Sundén, Er ... (368)
visa fler...
Cecconello, Marco (367)
Weiszflog, Matthias (365)
Possnert, Göran, 195 ... (365)
Sjöstrand, Henrik, 1 ... (363)
Hellesen, Carl, 1980 ... (325)
Skiba, Mateusz, 1985 ... (317)
Binda, Federico, 198 ... (314)
Rubel, Marek (305)
Frassinetti, Lorenzo (300)
Petersson, Per (292)
Bykov, Igor (279)
Hellsten, Torbjörn (278)
Weckmann, Armin (278)
Dzysiuk, Nataliia (278)
Ström, Petter (276)
Menmuir, Sheena (264)
Bergsåker, Henric (241)
Rachlew, Elisabeth, ... (239)
Johnson, Thomas (206)
Tholerus, Emmi (191)
Garcia-Carrasco, Alv ... (152)
Stefániková, Estera (143)
Elevant, Thomas (136)
Ivanova, Darya (136)
Ratynskaia, Svetlana (135)
Olivares, Pablo Vall ... (134)
Tolias, Panagiotis (132)
Asp, E (130)
Garcia Carrasco, Alv ... (126)
Zhou, Yushun (98)
Tholerus, Simon, 198 ... (84)
Jonsson, Thomas, 197 ... (61)
Binda, F. (53)
Dzysiuk, N. (51)
Hellesen, C (49)
Skiba, M. (49)
Rachlew, Elisabeth (39)
Bergsåker, Henrik (35)
Zhou, Y. (33)
Widdowson, A. (28)
Dzysiuk, Natalia (24)
Heinola, K (21)
Militello Asp, Emili ... (19)
Sahlberg, Arne (19)
visa färre...
Lärosäte
Uppsala universitet (390)
Kungliga Tekniska Högskolan (338)
Chalmers tekniska högskola (4)
Språk
Engelska (390)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (390)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy