SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Evans P) ;lar1:(slu)"

Sökning: WFRF:(Evans P) > Sveriges Lantbruksuniversitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
2.
  •  
3.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Björnerås, C., et al. (författare)
  • Widespread Increases in Iron Concentration in European and North American Freshwaters
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:10, s. 1488-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.
  •  
5.
  • De Kauwe, M. G., et al. (författare)
  • A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis
  • 2016
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 210:3, s. 1130-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’. We used a global dataset of A–Ci curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate Vcmax from Asat via this ‘one-point method’. If leaf respiration during the day (Rday) is known exactly, Vcmax can be estimated with an r2 value of 0.98 and a root-mean-squared error (RMSE) of 8.19 μmol m−2 s−1. However, Rday typically must be estimated. Estimating Rday as 1.5% of Vcmax, we found that Vcmax could be estimated with an r2 of 0.95 and an RMSE of 17.1 μmol m−2 s−1. The one-point method provides a robust means to expand current databases of field-measured Vcmax, giving new potential to improve vegetation models and quantify the environmental drivers of Vcmax variation.
  •  
6.
  • Peacock, M., et al. (författare)
  • Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:20, s. 5109-5123
  • Tidskriftsartikel (refereegranskat)abstract
    • Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2). A considerable body of research has improved emissions estimates from lakes, reservoirs and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural waterbodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1-44.3 g CH4 m(-2) year(-1) and -36-4421 g CO2 m(-2) year(-1). In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH4 emissions were converted to CO2 equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle.
  •  
7.
  • Wilson, Shaun K., et al. (författare)
  • The contribution of macroalgae-associated fishes to small-scale tropical reef fisheries
  • 2022
  • Ingår i: Fish and Fisheries. - : Wiley. - 1467-2960 .- 1467-2979. ; 23:4, s. 847-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroalgae-dominated reefs are a prominent habitat in tropical seascapes that support a diversity of fishes, including fishery target species. To what extent, then, do macroalgal habitats contribute to small-scale tropical reef fisheries? To address this question we: (1) Quantified the macroalgae-associated fish component in catches from 133 small-scale fisheries, (2) Compared life-history traits relevant to fishing (e.g. growth, longevity) in macroalgal and coral-associated fishes, (3) Examined how macroalgae-associated species can influence catch diversity, trophic level and vulnerability and (4) Explored how tropical fisheries change with the expansion of macroalgal habitats using a case study of fishery-independent data for Seychelles. Fish that utilised macroalgal habitats comprise 24% of the catch, but very few fished species relied entirely on macroalgal or coral habitats post-settlement. Macroalgal and coral-associated fishes had similar life-history traits, although vulnerability to fishing declined with increasing contribution of macroalgae association to the catch, whilst mean trophic level and diversity peaked when macroalgal-associated fish accounted for 20%–30% of catches. The Seychelles case study revealed similar total fish biomass on macroalgal and coral reefs, although the biomass of primary target species increased as macroalgae cover expanded. Our findings reinforce that multiple habitat types are needed to support tropical fishery stability and sustainability. Whilst coral habitats have been the focus of tropical fisheries management, we show the potential for macroalgae-associated fish to support catch size and diversity in ways that reduce vulnerability to overfishing. This is pertinent to seascapes where repeated disturbances are facilitating the replacement of coral reef with macroalgal habitats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zhang, Yan (1)
Chen, C. (1)
Li, H. (1)
Li, L. (1)
Li, Y. (1)
Wang, K. (1)
visa fler...
Zhang, F. (1)
Zhang, H. (1)
Burgess, T. (1)
Zhou, M. (1)
Liu, S. (1)
Kumar, S (1)
Zhang, Y. (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Singh, R. (1)
Wang, Y. (1)
Das, K. (1)
Li, Q. (1)
Mikhailov, K. (1)
Lu, L. (1)
Zhang, W. (1)
Vertessy, Beata G. (1)
Svantesson, Sten (1)
Nilsson, R. Henrik, ... (1)
Tedersoo, L. (1)
Ryberg, M. (1)
Ryberg, Martin (1)
Alves, A (1)
Leonardi, M (1)
Xu, R (1)
Laudon, Hjalmar (1)
Chen, J. (1)
Chakraborty, N. (1)
Kong, A. (1)
Garcia, D. (1)
Wang, Mei (1)
Yang, J. (1)
Tanaka, K. (1)
Wang, Xin (1)
Rothhaupt, Karl-Otto (1)
Liu, Yang (1)
Kaufmann, M (1)
HATTORI, T (1)
Zhao, Q (1)
Kumar, Rakesh (1)
Dutta, A. K. (1)
Wang, Dong (1)
Tang, X. (1)
Yuan, Y. (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Uppsala universitet (2)
Stockholms universitet (2)
Linköpings universitet (2)
visa fler...
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Lantbruksvetenskap (2)
Teknik (1)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy