SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Evans P. A.) srt2:(2020-2023);pers:(Evans V)"

Sökning: WFRF:(Evans P. A.) > (2020-2023) > Evans V

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
2.
  • Aran, A., et al. (författare)
  • Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter : The ion event on 19 June 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In mid-June 2020, the Solar Orbiter (SolO) mission reached its first perihelion at 0.51 au and started its cruise phase, with most of the in situ instruments operating continuously.Aims. We present the in situ particle measurements of the first proton event observed after the first perihelion obtained by the Energetic Particle Detector (EPD) suite on board SolO. The potential solar and interplanetary (IP) sources of these particles are investigated.Methods. Ion observations from similar to 20 keV to similar to 1 MeV are combined with available solar wind data from the Radio and Plasma Waves (RPW) instrument and magnetic field data from the magnetometer on board SolO to evaluate the energetic particle transport conditions and infer the possible acceleration mechanisms through which particles gain energy. We compare > 17-20 MeV ion count rate measurements for two solar rotations, along with the solar wind plasma data available from the Solar Wind Analyser (SWA) and RPW instruments, in order to infer the origin of the observed galactic cosmic ray (GCR) depressions.Results. The lack of an observed electron event and of velocity dispersion at various low-energy ion channels and the observed IP structure indicate a local IP source for the low-energy particles. From the analysis of the anisotropy of particle intensities, we conclude that the low-energy ions were most likely accelerated via a local second-order Fermi process. The observed GCR decrease on 19 June, together with the 51.8-1034.0 keV nuc(-1) ion enhancement, was due to a solar wind stream interaction region (SIR). The observation of a similar GCR decrease in the next solar rotation favours this interpretation and constitutes the first observation of a recurrent GCR decrease by SolO. The analysis of the recurrence times of this SIR suggests that it is the same SIR responsible for the He-4 events previously measured in April and May. Finally, we point out that an IP structure more complex than a common SIR cannot be discarded, mainly due to the lack of solar wind temperature measurements and the lack of a higher cadence of solar wind velocity observations.
  •  
3.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
4.
  • Allen, R. C., et al. (författare)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
5.
  • Chust, T., et al. (författare)
  • Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR) : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument is one of the four in situ instruments of the ESA/NASA Solar Orbiter mission, which was successfully launched on February 10, 2020. The Low Frequency Receiver (LFR) is one of its subsystems, designed to characterize the low frequency electric (quasi-DC - 10 kHz) and magnetic (similar to 1 Hz-10 kHz) fields that develop, propagate, interact, and dissipate in the solar wind plasma. Combined with observations of the particles and the DC magnetic field, LFR measurements will help to improve the understanding of the heating and acceleration processes at work during solar wind expansion.Aims. The capability of LFR to observe and analyze a variety of low frequency plasma waves can be demontrated by taking advantage of whistler mode wave observations made just after the near-Earth commissioning phase of Solar Orbiter. In particular, this is related to its capability of measuring the wave normal vector, the phase velocity, and the Poynting vector for determining the propagation characteristics of the waves.Methods. Several case studies of whistler mode waves are presented, using all possible LFR onboard digital processing products, waveforms, spectral matrices, and basic wave parameters.Results. Here, we show that whistler mode waves can be very properly identified and characterized, along with their Doppler-shifted frequency, based on the waveform capture as well as on the LFR onboard spectral analysis.Conclusions. Despite the fact that calibrations of the electric and magnetic data still require some improvement, these first whistler observations show a good overall consistency between the RPW LFR data, indicating that many science results on these waves, as well as on other plasma waves, can be obtained by Solar Orbiter in the solar wind.
  •  
6.
  • D'Amicis, R., et al. (författare)
  • First Solar Orbiter observation of the Alfvenic slow wind and identification of its solar source
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Turbulence dominated by large-amplitude, nonlinear Alfven-like fluctuations mainly propagating away from the Sun is ubiquitous in high-speed solar wind streams. Recent studies have demontrated that slow wind streams may also show strong Alfvenic signatures, especially in the inner heliosphere.Aims. The present study focuses on the characterisation of an Alfvenic slow solar wind interval observed by Solar Orbiter between 14 and 18 July 2020 at a heliocentric distance of 0.64 AU.Methods. Our analysis is based on plasma moments and magnetic field measurements from the Solar Wind Analyser (SWA) and Magnetometer (MAG) instruments, respectively. We compared the behaviour of different parameters to characterise the stream in terms of the Alfvenic content and magnetic properties. We also performed a spectral analysis to highlight spectral features and waves signature using power spectral density and magnetic helicity spectrograms, respectively. Moreover, we reconstruct the Solar Orbiter magnetic connectivity to the solar sources both via a ballistic and a potential field source surface (PFSS) model.Results. The Alfvenic slow wind stream described in this paper resembles, in many respects, a fast wind stream. Indeed, at large scales, the time series of the speed profile shows a compression region, a main portion of the stream, and a rarefaction region, characterised by different features. Moreover, before the rarefaction region, we pinpoint several structures at different scales recalling the spaghetti-like flux-tube texture of the interplanetary magnetic field. Finally, we identify the connections between Solar Orbiter in situ measurements, tracing them down to coronal streamer and pseudostreamer configurations.Conclusions. The characterisation of the Alfvenic slow wind stream observed by Solar Orbiter and the identification of its solar source are extremely important aspects for improving the understanding of future observations of the same solar wind regime, especially as solar activity is increasing toward a maximum, where a higher incidence of this solar wind regime is expected.
  •  
7.
  • Hadid, L. Z., et al. (författare)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
8.
  • Kretzschmar, M., et al. (författare)
  • Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind evolution differs from a simple radial expansion, while wave-particle interactions are assumed to be the major cause for the observed dynamics of the electron distribution function. In particular, whistler waves are thought to inhibit the electron heat flux and ensure the diffusion of the field-aligned energetic electrons (Strahl electrons) to replenish the halo population.Aims. The goal of our study is to detect and characterize the electromagnetic waves that have the capacity to modify the electron distribution functions, with a special focus on whistler waves.Methods. We carried out a detailed analysis of the electric and magnetic field fluctuations observed by the Solar Orbiter spacecraft during its first orbit around the Sun, between 0.5 and 1 AU. Using data from the Search Coil Magnetometer and electric antenna, both part of the Radio and Plasma Waves (RPW) instrumental suite, we detected the electromagnetic waves with frequencies above 3 Hz and determined the statistical distribution of their amplitudes, frequencies, polarization, and k-vector as a function of distance. Here, we also discuss the relevant instrumental issues regarding the phase between the electric and magnetic measurements as well as the effective length of the electric antenna.Results. An overwhelming majority of the observed waves are right-handed circularly polarized in the solar wind frame and identified as outwardly propagating quasi-parallel whistler waves. Their occurrence rate increases by a least a factor of 2 from 1 AU to 0.5 AU. These results are consistent with the regulation of the heat flux by the whistler heat flux instability. Near 0.5 AU, whistler waves are found to be more field-aligned and to have a smaller normalized frequency (f/f(ce)), larger amplitude, and greater bandwidth than at 1 AU.
  •  
9.
  • Louarn, P., et al. (författare)
  • Multiscale views of an Alfvenic slow solar wind : 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Alfvenic slow solar wind is of particular interest, as it is often characterized by intense magnetic turbulence, complex proton 3D velocity distribution functions (VDF), and an ensuing richness of kinetic and dynamic processes.Aims. We take advantage of the fast time cadence of measurements taken by the Proton-Alpha Sensor (PAS) on board Solar Orbiter to analyze the kinetic properties of the proton population, the variability of their VDFs, and the possible link with propagating magnetic structures. We also study the magnetic (B) and velocity (V) correlation that characterizes this type of wind down to the ion gyroperiod.Methods. We analyzed the VDFs measured by PAS, a novelty that take advantages of the capability of 3D measurements at a 4 Hz cadence. In addition, we considered MAG observations.Results. We first show that there is a remarkable correlation between the B and V components observed down to timescales approaching the ion gyrofrequency. This concerns a wide variety of fluctuations, such as waves, isolated peaks, and discontinuities. The great variability of the proton VDFs is also documented. The juxtaposition of a core and a field-aligned beam is the norm but the relative density of the beam, drift speed, and temperatures can considerably change on scales as short as as a few seconds. The characteristics of the core are comparatively more stable. These variations in the beam characteristics mostly explain the variations in the total parallel temperature and, therefore, in the total anisotropy of the proton VDFs. Two magnetic structures that are associated with significant changes in the shape of VDFs, one corresponding to relaxation of total anisotropy and the other to its strong increase, are analyzed here. Our statistical analysis shows a clear link between total anisotropy (and, thus, beam characteristics) and the direction of B with respect to the Parker spiral. In the present case, flux tubes aligned with Parker spiral contain an average proton VDF with a much more developed beam (thus, with larger total anisotropy) than those that are inclined, perpendicular, or even reverse with regard to the outward direction.Conclusions. These observations document the variability of the proton VDF shape in relation to the propagation of magnetic structures. This is a key area of interest for understanding of the effect of turbulence on solar wind dynamics.
  •  
10.
  • McMahon, J. H., et al. (författare)
  • Neurotoxicity with high-dose disulfiram and vorinostat used for HIV latency reversal
  • 2022
  • Ingår i: Aids. - : Ovid Technologies (Wolters Kluwer Health). - 0269-9370 .- 1473-5571. ; 36:1, s. 75-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this study was to examine whether administering both vorinostat and disulfiram to people with HIV (PWH) on antiretroviral therapy (ART) is well tolerated and can enhance HIV latency reversal. Design: Vorinostat and disulfiram can increase HIV transcription in PWH on ART. Together, these agents may lead to significant HIV latency reversal. Methods: Virologically suppressed PWH on ART received disulfiram 2000 mg daily for 28 days and vorinostat 400 mg daily on days 8-10 and 22-24. The primary endpoint was plasma HIV RNA on day 11 relative to baseline using a single copy assay. Assessments included cell-associated unspliced RNA as a marker of latency reversal, HIV DNA in CD4(+) T-cells, plasma HIV RNA, and plasma concentrations of ART, vorinostat, and disulfiram. Results: The first two participants (P1 and P2) experienced grade 3 neurotoxicity leading to trial suspension. After 24 days, P1 presented with confusion, lethargy, and ataxia having stopped disulfiram and ART. Symptoms resolved by day 29. After 11 days, P2 presented with paranoia, emotional lability, lethargy, ataxia, and study drugs were ceased. Symptoms resolved by day 23. CA-US RNA increased by 1.4-fold and 1.3-fold for P1 and P2 respectively. Plasma HIV RNA was detectable from day 8 to 37 (peak 81 copies ml(-1)) for P2 but was not increased in P1 Antiretroviral levels were therapeutic and neuronal injury markers were elevated in P1. Conclusion: The combination of prolonged high-dose disulfiram and vorinostat was not safe in PWH on ART and should not be pursued despite evidence of latency reversal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy