SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falk Sörqvist Elin) ;pers:(Enblad Gunilla)"

Sökning: WFRF:(Falk Sörqvist Elin) > Enblad Gunilla

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Miranda, Noel F. C. C., et al. (författare)
  • DNA repair genes are selectively mutated in diffuse large B cell lymphomas
  • 2013
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 210:9, s. 1729-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis.
  •  
2.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of I kappa B epsilon leads to NF-kappa B deregulation in aggressive chronic lymphocytic leukemia
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-kappa B is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-kappa B pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes I kappa B epsilon, a negative regulator of NF-kappa B in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced I kappa B epsilon protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that I kappa B epsilon loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-kappa B deregulation during lymphomagenesis.
  •  
3.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia.
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy