SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falk Sorqvist E.) "

Sökning: WFRF:(Falk Sorqvist E.)

  • Resultat 1-10 av 11
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia.
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
  •  
2.
  • Moens, Lotte N., et al. (författare)
  • Diagnostics of Primary Immunodeficiency Diseases : A Sequencing Capture Approach
  • 2014
  • Ingår i: PLOS ONE. - 1932-6203. ; 9:12, s. e114901-
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of next generation'' sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons.
  •  
3.
  • Lundin, Karin E., et al. (författare)
  • Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene
  • 2015
  • Ingår i: Clinical Immunology. - : Elsevier. - 1521-6616 .- 1521-7035. ; 161:2, s. 366-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetylglucosamine-l-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently been identified as the cause of novel primary immunodeficiency with a hyper-IgE like syndrome. Here we report the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, described already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Affected individuals were highly prone to infections, but lack the developmental defects in the nervous and skeletal systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or without increased IgE levels, and with variable forms of developmental defects affecting other organ systems.
  •  
4.
  •  
5.
  • McGinn, Steven, et al. (författare)
  • New technologies for DNA analysis - a review of the READNA Project
  • 2016
  • Ingår i: New Biotechnology. - : Elsevier. - 1871-6784 .- 1876-4347. ; 33:3, s. 311-330
  • Forskningsöversikt (refereegranskat)abstract
    • The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3rd and 4th generation of sequencing methods with nanopores and in situ sequencing, respectively.
  •  
6.
  •  
7.
  • Sassi, Atfa, et al. (författare)
  • Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels
  • 2014
  • Ingår i: Journal of Allergy and Clinical Immunology. - 0091-6749 .- 1097-6825. ; 133:5, s. 1410-U681
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. Objective: We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. Methods: After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. Results: Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p. Glu340del and p. Leu83Ser). A third homozygous mutation (p. Asp502Tyr) and the p. Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. Conclusion: Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.
  •  
8.
  • La Fleur, Linnea, et al. (författare)
  • Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11
  • 2019
  • Ingår i: Lung Cancer. - : Elsevier. - 0169-5002 .- 1872-8332. ; 130, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Non-small cell lung cancer (NSCLC) is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients, as well as significant differences in populations across the world with regard to mutation spectra and mutation frequencies. Here we aim to describe mutational patterns and linked clinical parameters in a population-based NSCLC cohort.MATERIALS AND METHODS: Using targeted resequencing the mutational status of 82 genes was evaluated in a consecutive Swedish surgical NSCLC cohort, consisting of 352 patient samples from either fresh frozen or formalin fixed paraffin embedded (FFPE) tissues. The panel covers all exons of the 82 genes and utilizes reduced target fragment length and two-strand capture making it compatible with degraded FFPE samples.RESULTS: We obtained a uniform sequencing coverage and mutation load across the fresh frozen and FFPE samples by adaption of sequencing depth and bioinformatic pipeline, thereby avoiding a technical bias between these two sample types. At large, the mutation frequencies resembled the frequencies seen in other western populations, except for a high frequency of KRAS hotspot mutations (43%) in adenocarcinoma patients. Worse overall survival was observed for adenocarcinoma patients with a mutation in either TP53, STK11 or SMARCA4. In the adenocarcinoma KRAS-mutated group poor survival appeared to be linked to concomitant TP53 or STK11 mutations, and not to KRAS mutation as a single aberration. Similar results were seen in the analysis of publicly available data from the cBioPortal. In squamous cell carcinoma a worse prognosis could be observed for patients with MLL2 mutations, while CSMD3 mutations were linked to a better prognosis.CONCLUSION: Here we have evaluated the mutational status of a NSCLC cohort. We could not confirm any survival impact of isolated driver mutations. Instead, concurrent mutations in TP53 and STK11 were shown to confer poor survival in the KRAS-positive adenocarcinoma subgroup.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy