SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fan Chun Chieh) "

Sökning: WFRF:(Fan Chun Chieh)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stahl, Eli A, et al. (författare)
  • Genome-wide association study identifies 30 loci associated with bipolar disorder.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 51:5, s. 793-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
  •  
2.
  • Grasby, KL, et al. (författare)
  • The genetic architecture of the human cerebral cortex
  • 2020
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 367:6484, s. 1340-
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Huynh-Le, Minh-Phuong, et al. (författare)
  • Polygenic hazard score is associated with prostate cancer in multi-ethnic populations
  • 2021
  • Ingår i: Nature Communications. - : NATURE RESEARCH. - 2041-1723 .- 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score >= 7, stage T3-T4, PSA >= 10ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n=71,856), Asian (n=2,382), and African (n=6,253) genetic ancestries (p<10(-180)). Comparing the 80(th)/20(th) PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset. A polygenic hazard score (PHS1) improves prostate cancer screening accuracy in European patients. Here, the authors test the performance of a version compatible with OncoArray genotypes (PHS2) in a multi-ethnic dataset and find that it risk-stratifies men for any, aggressive, and fatal prostate cancer.
  •  
4.
  • Chen, Chi-Hua, et al. (författare)
  • Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovering genetic variants associated with human brain structures is an on-going effort. The ENIGMA consortium conducted genome-wide association studies (GWAS) with standard multi-study analytical methodology and identified several significant single nucleotide polymorphisms (SNPs). Here we employ a novel analytical approach that incorporates functional genome annotations (e.g., exon or 5′UTR), total linkage disequilibrium (LD) scores and heterozygosity to construct enrichment scores for improved identification of relevant SNPs. The method provides increased power to detect associated SNPs by estimating stratum-specific false discovery rate (FDR), where strata are classified according to enrichment scores. Applying this approach to the GWAS summary statistics of putamen volume in the ENIGMA cohort, a total of 15 independent significant SNPs were identified (conditional FDR < 0.05). In contrast, 4 SNPs were found based on standard GWAS analysis (P < 5 × 10−8). These 11 novel loci include GATAD2B, ASCC3, DSCAML1, and HELZ, which are previously implicated in various neural related phenotypes. The current findings demonstrate the boost in power with the annotation-informed FDR method, and provide insight into the genetic architecture of the putamen.
  •  
5.
  • Kauppi, Karolina, et al. (författare)
  • Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease
  • 2018
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved prediction of progression to Alzheimer's Disease (AD) among older individuals with mild cognitive impairment (MCI) is of high clinical and societal importance. We recently developed a polygenic hazard score (PHS) that predicted age of AD onset above and beyond APOE. Here, we used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS for predicting AD development in older adults with MCI. We examined the predictive value of PHS alone and in combination with baseline structural magnetic resonance imaging (MRI) data on performance on the Mini-Mental State Exam (MMSE). In survival analyses, PHS significantly predicted time to progression from MCI to AD over 120 months (p = 1.07e-5), and PHS was significantly more predictive than APOE alone (p = 0.015). Combining PHS with baseline brain atrophy score and/or MMSE score significantly improved prediction compared to models without PHS (three-factor model p = 4.28e-17). Prediction model accuracies, sensitivities and area under the curve were also improved by including PHS in the model, compared to only using atrophy score and MMSE. Further, using linear mixed-effect modeling, PHS improved the prediction of change in the Clinical Dementia Rating—Sum of Boxes (CDR-SB) score and MMSE over 36 months in patients with MCI at baseline, beyond both APOE and baseline levels of brain atrophy. These results illustrate the potential clinical utility of PHS for assessment of risk for AD progression among individuals with MCI both alone, or in conjunction with clinical measures of prodromal disease including measures of cognitive function and regional brain atrophy.
  •  
6.
  • Lo, Min-Tzu, et al. (författare)
  • Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 49:1, s. 152-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Personality is influenced by genetic and environmental factors(1) and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci(2,3), significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit- hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
  •  
7.
  •  
8.
  • Lo, Min-Tzu, et al. (författare)
  • Identification of genetic heterogeneity of Alzheimer's disease across age
  • 2019
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 84, s. 243.e1-243.e9
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of APOE for Alzheimer's disease (AD) is modified by age. Beyond APOE, the polygenic architecture may also be heterogeneous across age. We aim to investigate age-related genetic heterogeneity of AD and identify genomic loci with differential effects across age. Stratified gene-based genome-wide association studies and polygenic variation analyses were performed in the younger (60-79 years, N = 14,895) and older (>= 80 years, N = 6559) age-at-onset groups using Alzheimer's Disease Genetics Consortium data. We showed a moderate genetic correlation (r(g) = 0.64) between the two age groups, supporting genetic heterogeneity. Heritability explained by variants on chromosome 19 (harboring APOE) was significantly larger in younger than in older onset group (p < 0.05). APOE region, BIN1, OR2S2, MS4A4E, and PICALM were identified at the gene-based genome-wide significance (p < 2.73 x 10(-6)) with larger effects at younger age (except MS4A4E). For the novel gene OR2S2, we further performed leave-one-out analyses, which showed consistent effects across subsamples. Our results suggest using genetically more homogeneous individuals may help detect additional susceptible loci. Published by Elsevier Inc.
  •  
9.
  • Lo, Min-Tzu, et al. (författare)
  • Modeling prior information of common genetic variants improves gene discovery for neuroticism
  • 2017
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 26:22, s. 4530-4539
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-wide association studies (GWAS) may be attributable to low statistical power. We proposed a novel framework to improve the power for gene discovery by incorporating prior information of single nucleotide polymorphisms (SNPs) and combining two relevant existing tools, relative enrichment score (RES) and conditional false discovery rate (FDR). Here, SNP's conditional FDR was estimated given its RES based on SNP prior information including linkage disequilibrium (LD)-weighted genic annotation scores, total LD scores and heterozygosity. A known significant locus in chromosome 8p was excluded before estimating FDR due to long-range LD structure. Only one significant LD-independent SNP was detected by analyses of unconditional FDR and traditional GWAS in the discovery sample (N = 59 225), and notably four additional SNPs by conditional FDR. Three of the five SNPs, all identified by conditional FDR, were replicated (P < 0.05) in an independent sample (N = 170 911). These three SNPs are located in intronic regions of CADM2, LINGO2 and EP300 which have been reported to be associated with autism, Parkinson's disease and schizophrenia, respectively. Our approach using a combination of RES and conditional FDR improved power of traditional GWAS for gene discovery providing a useful framework for the analysis of GWAS summary statistics by utilizing SNP prior information, and helping to elucidate the links between neuroticism and complex diseases from a genetic perspective.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy