SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fang B) ;lar1:(ltu)"

Search: WFRF:(Fang B) > Luleå University of Technology

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Eichhorn, S. J., et al. (author)
  • Current international research into cellulose as a functional nanomaterial for advanced applications
  • 2022
  • In: Journal of Materials Science. - : Springer Nature. - 0022-2461 .- 1573-4803. ; 57:10, s. 5697-5767
  • Journal article (peer-reviewed)abstract
    • This review paper provides a recent overview of current international research that is being conducted into the functional properties of cellulose as a nanomaterial. A particular emphasis is placed on fundamental and applied research that is being undertaken to generate applications, which are now becoming a real prospect given the developments in the field over the last 20 years. A short introduction covers the context of the work, and definitions of the different forms of cellulose nanomaterials (CNMs) that are most widely studied. We also address the terminology used for CNMs, suggesting a standard way to classify these materials. The reviews are separated out into theme areas, namely healthcare, water purification, biocomposites, and energy. Each section contains a short review of the field within the theme and summarizes recent work being undertaken by the groups represented. Topics that are covered include cellulose nanocrystals for directed growth of tissues, bacterial cellulose in healthcare, nanocellulose for drug delivery, nanocellulose for water purification, nanocellulose for thermoplastic composites, nanocellulose for structurally colored materials, transparent wood biocomposites, supercapacitors and batteries.
  •  
2.
  • Yuan, Zhaoyang, et al. (author)
  • Effective Biomass Fractionation through Oxygen-Enhanced Alkaline–Oxidative Pretreatment
  • 2021
  • In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:3, s. 1118-1127
  • Journal article (peer-reviewed)abstract
    • The high recalcitrance of plant cell walls is an obstacle for effective chemical or biological conversion into renewable chemicals and transportation fuels. Here, we investigated the utilization of both oxygen (O2) and hydrogen peroxide (H2O2) as co-oxidants during alkaline–oxidative pretreatment to improve biomass fractionation and increase enzymatic digestibility. The oxidative pretreatment of hybrid poplar was studied over a variety of conditions. Employing O2 in addition to H2O2 as a co-oxidant during the two-stage alkaline pre-extraction/copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in a substantial improvement in delignification relative to using H2O2 alone during the second-stage Cu-AHP pretreatment, leading to high overall sugar yields even at H2O2 loadings as low as 2% (w/w of the original biomass). The presence of H2O2, however, was both critical and synergistic. Performing analogous reactions in the absence of H2O2 resulted in approximately 25% less delignification and 30% decrease in sugar yields. The lignin isolated from this dual oxidant second stage had high aliphatic hydroxyl group content and reactivity to isocyanate, indicating that it is a promising substrate for the production of polyurethanes. To test the suitability of the isolated lignin as a source of aromatic monomers, the lignin was subjected to a sequential Bobbitt’s salt oxidation followed by a formic acid-catalyzed depolymerization process. Monomer yields of approximately 17% (w/w) were obtained, and the difference in yields was not significant between lignin isolated from our Cu-AHP process with and without O2 as a co-oxidant. Thus, the addition of O2 did not lead to significant lignin crosslinking, a result consistent with the two-dimensional heteronuclear single-quantum coherence NMR spectra of the isolated lignin.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view