SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fang Yue) ;hsvcat:2"

Sökning: WFRF:(Fang Yue) > Teknik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dan, Lilin, et al. (författare)
  • Design of Offset Spatial Modulation OFDM
  • 2021
  • Ingår i: IEEE Transactions on Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 0090-6778 .- 1558-0857. ; 69:9, s. 6267-6280
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the idea of offset spatial modulation (OSM) is integrated with orthogonal frequency division multiplexing (OFDM), toward an efficient design to bridge their advantages. Compared to its conventional counterpart as spatial modulation (SM)-OFDM, the proposed OSM-OFDM scheme aims at providing a simplified implementation structure with less number of radio frequency (RF) chains, by introducing an offset between the RF chain and the index of the activated transmit antenna on each subcarrier. Specifically, three types of offset antenna selection (OAS) methods are developed to meet different scene requirements for different number of available RF chains. Furthermore, through theoretical analysis, we quantify the bit error rate upper bounds of OSM-OFDM with different types of OAS methods. Finally, extensive computer simulations demonstrate that OSM-OFDM provides a flexible tradeoff among implementation cost, computation complexity and error performance.
  •  
2.
  • Fang, Shu, et al. (författare)
  • Offset Spatial Modulation and Offset Space Shift Keying : Efficient Designs for Single-RF MIMO Systems
  • 2019
  • Ingår i: IEEE Transactions on Communications. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0090-6778 .- 1558-0857. ; 67:8, s. 5434-5444
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial modulation (SM) and space shift keying (SSK) techniques have the unique advantages of their single-radio-frequency (RF) structures compared with conventional multiple-input-multiple-output (MIMO) techniques. However, the transmission rates of these techniques are decided by the maximal switching frequency or by the minimal switching time between the RF chain and transmit antennas, which has been a bottleneck for their applications in future broadband wireless communications. To alleviate this problem, we propose a class of novel offset SM (OSM) and offset SSK (OSSK) schemes, with the aid of channel state information (CSI) at the transmitter. Compared with conventional SM and SSK, the proposed OSM and OSSK schemes can reduce the switching frequency of the RF chain, by introducing an offset between the connected RF chain and the index of the spatial modulated antenna. In extreme conditions, the proposed OSM and OSSK can work without RF switching while maintaining the single-RF advantage of conventional SM and SSK schemes. Through theoretical analysis, we also develop the bit-error rate (BER) performance bounds for the proposed two schemes. Finally, our simulation results demonstrate that the proposed OSM and OSSK outperform their counterparts, including conventional SM, SSK, CSI-aided SM, and CSI-aided SSK, while having a simplified RF-switching structure.
  •  
3.
  • Fang, Xing, et al. (författare)
  • Microstructure and mechanical properties of the laser welded air-hardening steel joint
  • 2024
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 213
  • Tidskriftsartikel (refereegranskat)abstract
    • The decrease in mechanical properties of high-strength steel after welding is an important issue affecting the wide application of high-strength steel. Air-hardening steel is a high-strength steel suitable for lower body structural parts such as subframes. Its application process involves welding, hot forming and other processes. The present work investigates the microstructure and mechanical properties of the air-hardening steel laser welded joint that is air-cooled after hot forming in the two-phase zone (800 °C). The microstructure was characterized by electron backscattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that during hot forming, the welded joint transforms from martensite to ferrite and acicular martensite, and the base metal transforms from ferrite to polygonal martensite and ferrite. The difference in martensite morphology between the welded joint and the base metal is attributed to the nucleation positions of austenite. The structural evolution of the welded joint and the base metal is accompanied with the annihilation and reproduction of dislocations, which results in significant changes in hardness. The hardness value dropped from the highest 430 HV to 271 HV in the welded joint, while increased from the lowest 184 HV to 203 HV in the base metal. After hot forming, the tensile strength of the welded sample is reduced by only 36 MPa, and the total elongation is slightly decreased by about 1.5% compared with the unwelded sample. The welded joint and the base metal have similar plastic deformation capabilities, since the acicular martensite in the welded joint displays good plastic deformation ability, and the dislocation density of the welded joint and the base metal is similar. Overall, the microstructure and dislocation density of the air-hardening steel welded joint after hot forming are similar to those of the base metal, which is responsible for the good mechanical properties of air-hardening steel welded joint.
  •  
4.
  • Hantson, Stijn, et al. (författare)
  • The status and challenge of global fire modelling
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
5.
  • Hu, Haiman, et al. (författare)
  • Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes
  • 2024
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 99, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The confined ionic liquid (IL) in solid polymer composite electrolytes (SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO2 (SiO2@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+ transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher tLi+, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO2 provided an additional Li+ transport pathway (Li+ → SiO2@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy