SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farde L) "

Sökning: WFRF:(Farde L)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schwarz, Emanuel, et al. (författare)
  • Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188 .- 2158-3188. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
  •  
2.
  • Elvsåshagen, Torbjørn, et al. (författare)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson's disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders. The genetic architecture underlying brainstem regions and how this links to common brain disorders is not well understood. Here, the authors use MRI and GWAS data from 27,034 individuals to identify genetic and morphological brainstem features that influence common brain disorders.
  •  
3.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
4.
  • Malmqvist, Anna, et al. (författare)
  • Increased peripheral levels of TARC/CCL17 in first episode psychosis patients
  • 2019
  • Ingår i: Schizophrenia Research. - : ELSEVIER. - 0920-9964 .- 1573-2509. ; 210, s. 221-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence for a link between the pathophysiology of schizophrenia and the immune system is mounting. Altered levels of chemokines in plasma have previously been reported in patients with schizophrenia under antipsychotic medication. Here we aimed to study both peripheral and central chemokine levels in drugnaive or short-time medicated first episode psychosis (FEP) patients. Method: We analyzed nine chemokines in plasma and CSF from 41 FEP patients and 22 healthy controls using electrochemiluminescence assay. Results: In plasma four chemokines; TARC/CCL17, eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 and in CSF one chemokine; IP-10/CXCL10 showed reliable detection in N50% of the cases. FEP patients displayed increased levels of TARC/CCL17 in plasma compared to healthy controls, 89.6 (IQR 66.2-125.8) pg/mL compared to 48.6 (IQR 28.0-71.7) pg/mL (p = 0.001). The difference was not attributed to confounding factors. Plasma TARC/CCL17 was not associated with PANSS, CGI or GAF scores, neither with cognitive functions. The chemokines eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 in plasma and IP-10/CXCL10 in CSF did not differ between FEP patients and controls. Conclusion: In line with a previous study showing that chronic patients with schizophrenia display increased plasma TARC/CCL17 levels, we here found an elevation in FEP patients suggesting a role of TARC/CCL17 in early stages of schizophrenia. The exactmechanism of this involvement is still unknown and future longitudinal studies as well as studies of central and peripheral chemokine levels would be of great interest. (C) 2018 Elsevier B.V. All rights reserved.
  •  
5.
  • Orhan, F., et al. (författare)
  • Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis
  • 2018
  • Ingår i: Acta Psychiatrica Scandinavica. - : WILEY. - 0001-690X .- 1600-0447. ; 138:5, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveMethodAccumulating evidence implicates immune activation in the development of schizophrenia. Here, monocyte numbers, monocyte chemoattractant protein-1 (MCP-1) and chitinase-3-like protein 1 (YKL-40) were investigated in plasma and cerebrospinal fluid (CSF) in first-episode psychosis (FEP) patients. CSF and blood were sampled from 42 first-episode psychosis (FEP) patients and 22 healthy controls. The levels of YKL-40 and MCP-1 were measured using electrochemiluminescence assay, and blood monocytes were counted using an XN-9000-hematology analyzer. ResultsConclusionWe found higher plasma levels of MCP-1 and YKL-40 in FEP patients compared with healthy controls, a condition that was unrelated to antipsychotic and/or anxiolytic medication. This was combined with an increased number of blood monocytes and a borderline significant increase in YKL-40 levels in the CSF of tobacco-free FEP patients. Plasma or CSF chemokines or blood monocytes did not correlate with the severity of symptoms or the level of functioning. These data demonstrate activation of monocytes in FEP and strengthens the idea of an immune dysfunction of psychotic disorders. Further studies are required to perceive a role of YKL-40 and MCP-1 in the initiation and progression of schizophrenia.
  •  
6.
  • Forsberg, A., et al. (författare)
  • The Immune Response of the Human Brain to Abdominal Surgery
  • 2017
  • Ingår i: Annals of Neurology. - : WILEY. - 0364-5134 .- 1531-8249. ; 81:4, s. 572-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans. This study examines the short-and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. Methods: Eight males undergoing prostatectomy under general anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [C-11]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity to lipopolysaccharide (LPS) stimulation, and cognitive function were assessed. Results: Patients showed a global downregulation of gray matter [C-11]PBR28 binding of 26 +/- 26% (mean +/- standard deviation) at 3 to 4 days postoperatively compared to baseline (p=0.023), recovering or even increasing after 3 months. LPS-induced release of the proinflammatory marker tumor necrosis factor-a in blood displayed a reduction (41 +/- 39%) on the 3rd to 4th postoperative day, corresponding to changes in [C-11]PBR28 distribution volume. Change in Stroop Color-Word Test performance between postoperative days 3 to 4 and 3 months correlated to change in [C-11]PBR28 binding (p=0.027). Interpretation: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may be related to postsurgical impairments of cognitive function.
  •  
7.
  • Alnaes, Dag, et al. (författare)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
8.
  •  
9.
  • Varnäs, K., et al. (författare)
  • Integrated strategy for use of positron emission tomography in nonhuman primates to confirm multitarget occupancy of novel psychotropic drugs : An example with AZD3676
  • 2016
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology and Experimental Therapy. - 0022-3565 .- 1521-0103. ; 358:3, s. 464-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5- hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer's disease. Here, we evaluated the properties of AZD3676 as a CNS drug by combining in vitro and ex vivo radioligand binding techniques, behavioral pharmacology in rodents, and PET imaging in nonhuman primates. Target engagement in the nonhuman primate brain was assessed in PET studies by determination of drug-induced occupancy using receptorselective radioligands. AZD3676 showed preclinical properties consistent with CNS drug potential, including nanomolar receptor affinity and efficacy in rodent models of learning and memory. In PET studies of the monkey brain, AZD3676 inhibited radioligand binding in a dose-dependent manner with similar affinity at both receptors. The equally high affinity at 5-HT1A and 5-HT1B receptors as determined in vivo was not predicted from corresponding estimates obtained in vitro, suggestingmore than 10-fold selectivity for 5-HT1A versus 5-HT1B receptors. These findings support the further integrated use of PET for confirmation of multitarget occupancy of CNS drugs. Importantly, earlier introduction of PET studies in nonhuman primates may reduce future development costs and the requirement for animal experiments in preclinical CNS drug development programs.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy