SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Farrer M J) ;lar1:(lu)"

form:Search_simp_t: WFRF:(Farrer M J) > swepub_uni:Lu_t

  • navigation:Result_t 1-10 navigation:of_t 23
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Fuchs, J, et al. (creator_code:aut_t)
  • Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication.
  • 2007
  • record:In_t: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 1526-632X .- 0028-3878. ; 68:12, s. 916-922
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background: The " Lister family complex," an extensive Swedish family with autosomal dominant Parkinson disease, was first described by Henry Mjones in 1949. On the basis of clinical, molecular, and genealogic findings on a Swedish and an American family branch, we provide genetic evidence that explains the parkinsonism in this extended pedigree. Methods: Clinical methods included a detailed neurologic exam of the proband of the Swedish family branch, MRI, and ([ 123] I) - beta - CIT SPECT imaging. Genomic analysis included alpha-synuclein sequencing, SNCA real-time PCR dosage, chromosome 4q21 microsatellite analysis, and high-resolution microarray genotyping. The geographic origin and ancestral genealogy of each pedigree were researched in the medical literature and Swedish Parish records. Results: The proband of the Swedish family branch presented with early dysautonomia followed by progressive parkinsonism suggestive of multiple system atrophy. Molecular analysis identified a genomic duplication of < 0.9 Mb encompassing alpha-synuclein and multimerin 1 ( SNCA- MMRN1), flanked by long interspersed repeat sequences ( LINE L1). Microsatellite variability within the genomic interval was identical to that previously described for a Swedish American family with an alpha- synuclein triplication. Subsequent genealogic investigation suggested that both kindreds are ancestrally related to the Lister family complex. Conclusion: Our findings extend clinical, genetic, and genealogical research on the Lister family complex. The genetic basis for familial parkinsonism is an SNCA- MMRN11 multiplication, but whereas SNCA- MMRN1 duplication in the Swedish proband ( Branch J) leads to late- onset autonomic dysfunction and parkinsonism, SNCA- MMRN1 triplication in the Swedish American family ( Branch I) leads to early- onset Parkinson disease and dementia.
  •  
9.
  • Springer, W, et al. (creator_code:aut_t)
  • Heterozygous PINK1 p.G411S mutation increases risk for Parkinson's disease (PD)
  • 2016
  • record:In_t: Movement Disorders. - : Wiley. - 0885-3185. ; 31:Suppl. S2, s. 282-282
  • swepub:Mat_conferencepaper_t (swepub:level_refereed_t)abstract
    • Objective: To investigate the possible disease-association and pathogenic mechanisms of heterozygous PINK1 mutations from a genetic, functional, and structural perspective. Background: It has been postulated that heterozygous mutations in recessive PD genes may increase disease risk. In particular, the PINK1 p.G411S mutation has been reported in families with dominant inheritance patterns, suggesting that it might confer a sizeable disease risk. Methods: We performed a pedigree analysis of seven patients with a heterozygous PINK1 p.G411S mutation with at least one additional affected family member. We screened five case-control series and performed a meta-analysis of previous studies that had examined the variant. For functional cell-based analyses, we used patients skin fibroblast from PINK1 p.G411S or p.Q456X heterozygotes and investigated endogenous protein levels and kinase activity by biochemistry and imaging. For structural analyses, we performed molecular modeling and generated monomeric and dimeric forms of wild type (WT) and mutant PINK1 protein. Using molecular dynamics simulations, we analyzed effects of the p.G411S mutation on WT PINK1 in a heterodimeric complex over time. Results: Our analyses revealed a genetic association of heterozygous PINK1 p.G411S mutation with an increased risk for PD and a possible dominant inheritance with incomplete co-segregation. In patients skin fibroblasts, we establish a dominant negative mode for heterozygous p.G411S mutations under endogenous conditions. While total PINK1 protein levels were similar to controls upon mitochondrial stress, cellular PINK1 kinase activity was significantly reduced in p.G411S heterozygotes compared to WT and importantly to p.Q456X heterozygotes, which resulted in 50% reduction of PINK1 protein levels. Structural analyses supported our hypothesis that the p.G411S mutation can poison PINK1 WT in a heterodimeric complex and thus effectively reduce cellular PINK1 kinase activity. This in turn impairs the protective functions of the PINK1/PARKIN-mediated mitochondrial quality control. Conclusions: Our study uncovers increased disease risk and molecular mechanisms of a particular heterozygous mutation in a recessive PD gene. Based on genetic and clinical evaluation as well as functional and structural characterization, we established PINK1 p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a dominant negative function phenotype.
  •  
10.
  • Deming, Yuetiva, et al. (creator_code:aut_t)
  • Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers
  • 2017
  • record:In_t: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 133:5, s. 839-856
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case–control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = −0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t