SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Favre Adrien) ;mspu:(article)"

Sökning: WFRF:(Favre Adrien) > Tidskriftsartikel

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Favre, Adrien, et al. (författare)
  • Differential adaptation drives ecological speciation in campions (Silene) : evidence from a multi-site transplant experiment
  • 2017
  • Ingår i: New Phytologist. - : WILEY-BLACKWELL. - 0028-646X .- 1469-8137. ; 213:3, s. 1487-1499
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silenedioica and S.latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F-1) and second-generation (F-2) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F-1 hybrids performed intermediately and F-2 hybrids underperformed in comparison to F-1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F-1 and F-2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.
  •  
2.
  • Favre, Adrien, et al. (författare)
  • Stress tolerance in closely related species and their first-generation hybrids : a case study of Silene
  • 2011
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 99:6, s. 1415-1423
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Hybridization is common in natural plant populations. Trait expression and ecological performance of hybrids determine the consequences of hybridization such as the degree and direction of gene flow or the generation of phenotypic novelty. 2. We investigated responses to shade and drought stress in crosses within the naturally hybridizing campions Silene dioica and S. latifolia and reciprocal crosses between them. We collected data on fitness proxies and on leaf and root traits in a 2-year greenhouse experiment. 3. Responses to drought stress did not differ between cross types. Shade stress, in contrast, led to a reduced flowering incidence in S. dioica but not in S. latifolia. Rapid flowering under stress conditions in S. latifolia could be an adaptation to disturbance in its habitat, whereas a delay of reproduction might be adaptive in the more predictable environment of S. dioica. 4. Hybrids exhibited intermediate, parental-like and transgressive trait expression. Both hybrid cross types were similar to S. latifolia in terms of biomass production possibly because of dominance of S. latifolia alleles or heterosis. Hybrids further had a strongly reduced flowering incidence under shade stress as did S. dioica, suggesting dominance of S. dioica alleles for flower induction. Under shade stress, both hybrid cross types produced much larger leaves than either of the two species suggesting that epigenetic interactions are disturbed. Reciprocal hybrids did not differ in fitness; however, maternal effects were observed for root cross-sectional area and mass per male flower, possibly supporting asymmetric gene flow in natural populations. 5. Synthesis. Silene latifolia and S. dioica responded to stress with differences in life history rather than in growth. Our results further suggest that different modes of gene action are responsible for the specific combination of intermediate, parental-like and transgressive traits observed in first-generation hybrids that may limit their performance and thus gene flow between the species.
  •  
3.
  • Gramlich, Susanne, et al. (författare)
  • A polygenic architecture with habitat-dependent effects underlies ecological differentiation in Silene
  • 2022
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 235:4, s. 1641-1652
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological differentiation can drive speciation but it is unclear how the genetic architecture of habitat-dependent fitness contributes to lineage divergence. We investigated the genetic architecture of cumulative flowering, a fitness component, in second-generation hybrids between Silene dioica and Silene latifolia transplanted into the natural habitat of each species.We used reduced-representation sequencing and Bayesian sparse linear mixed models (BSLMMs) to analyze the genetic control of cumulative flowering in each habitat.Our results point to a polygenic architecture of cumulative flowering. Allelic effects were mostly beneficial or deleterious in one habitat and neutral in the other. Positive-effect alleles often were derived from the native species, whereas negative-effect alleles, at other loci, tended to originate from the non-native species.We conclude that ecological differentiation is governed and maintained by many loci with small, habitat-dependent effects consistent with conditional neutrality. This pattern may result from differences in selection targets in the two habitats and from environmentally dependent deleterious load. Our results further suggest that selection for native alleles and against non-native alleles acts as a barrier to gene flow between species.
  •  
4.
  • Karrenberg, Sophie, et al. (författare)
  • Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene)
  • 2019
  • Ingår i: Evolution. - : Wiley-Blackwell. - 0014-3820 .- 1558-5646. ; 73:2, s. 245-261
  • Tidskriftsartikel (refereegranskat)abstract
    • New species arise through the evolution of reproductive barriers between formerly interbreeding lineages. Yet, comprehensive assessments of potential reproductive barriers, which are needed to make inferences on processes driving speciation, are only available for a limited number of systems. In this study, we estimated individual and cumulative strengths of seven prezygotic and six postzygotic reproductive barriers between the recently diverged taxa Silene dioica (L.) Clairv. and S. latifolia Poiret using both published and new data. A combination of multiple partial reproductive barriers resulted in near-complete reproductive isolation between S. dioica and S. latifolia, consistent with earlier estimates of gene flow between the taxa. Extrinsic barriers associated with adaptive ecological divergence were most important, while intrinsic postzygotic barriers had moderate individual strength but contributed only little to total reproductive isolation. These findings are in line with ecological divergence as driver of speciation. We further found extensive variation in extrinsic reproductive isolation, ranging from sites with very strong selection against migrants and hybrids to intermediate sites where substantial hybridization is possible. This situation may allow for, or even promote, heterogeneous genetic divergence.
  •  
5.
  • Page, Paul, et al. (författare)
  • Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6, s. e98755-
  • Tidskriftsartikel (refereegranskat)abstract
    • Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F-2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of a-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds alpha-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
  •  
6.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy