SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferrari P) ;hsvcat:2"

Sökning: WFRF:(Ferrari P) > Teknik

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abata, E., et al. (författare)
  • Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576 .- 0167-5087. ; 621:1-3, s. 134-150
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit. (C) 2010 Published by Elsevier B.V.
  •  
2.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
3.
  • Ferrari, A. C., et al. (författare)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
4.
  • Boot-Handford, M. E., et al. (författare)
  • Carbon capture and storage update
  • 2014
  • Ingår i: Energy and Environmental Sciences. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 7:1, s. 130-189
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, Carbon Capture and Storage (Sequestration) (CCS) has been proposed as a potential method to allow the continued use of fossil-fuelled power stations whilst preventing emissions of CO2 from reaching the atmosphere. Gas, coat (and biomass)-fired power stations can respond to changes in demand more readily than many other sources of electricity production, hence the importance of retaining them as an option in the energy mix. Here, we review the leading CO2 capture technologies, available in the short and long term, and their technological maturity, before discussing CO2 transport and storage. Current pilot plants and demonstrations are highlighted, as is the importance of optimising the CCS system as a whole. Other topics briefly discussed include the viability of both the capture of CO2 from the air and CO2 reutilisation as climate change mitigation strategies. Finally, we discuss the economic and legal aspects of CCS.
  •  
5.
  • Milstead, David A., et al. (författare)
  • Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: Tracker properties
  • 2017
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton-proton, proton-lead and lead-lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. These studies show that the tracking performance of the TRT is similar for the two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities. © CERN 2017 for the benefit of the ATLAS collaboration.
  •  
6.
  • Ferrari, P., et al. (författare)
  • Resilient time synchronization opportunistically exploiting UWB RTLS infrastructure
  • 2022
  • Ingår i: IEEE Transactions on Instrumentation and Measurement. - : Institute of Electrical and Electronics Engineers Inc.. - 0018-9456 .- 1557-9662. ; 71, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra Wide Band (UWB) based solutions for real time localization are starting to be widely diffused. They use two-way ranging scheme achieving indoor positioning accuracy well below ten centimeters. These wireless devices are based on counters with picosecond resolution, which could be used also for nodes time synchronization. This work aims to propose an opportunistic approach for transparently obtaining multiple accurate time synchronization from low-cost infrastructure of Real Time Location Systems (RTLS). After the description of the proposed approach, the idea is demonstrated using off-the-shelf Ultra Wide Band (UWB) modules from Decawave and their related software. Thanks to hardware timestamping support inside the core architecture, the realized wireless station is able to simultaneously lock and track several time references generated by the UWB module. The extensive experimental characterization evaluates both the uncertainty of the reference signal generated by the UWB receiver, and the time synchronization uncertainty of the whole host system running a Proportional Integrative (PI) control loop for locking the master reference clock. The time reference pulses are delivered by the UWB modules with a maximum jitter on the order of 40 ns, whereas the synchronization uncertainty is less than 10 ns. IEEE
  •  
7.
  • Ferrari, P., et al. (författare)
  • On the evaluation of LoRaWAN virtual channels orthogonality for dense distributed systems
  • 2017
  • Ingår i: 2017 IEEE International Workshop on Measurement and Network (M&N). - : IEEE. - 9781509056798 ; , s. 85-90
  • Konferensbidrag (refereegranskat)abstract
    • Internet of Things (IoT) aims at collecting data from billions of devices connected altogether. Despite there is no one technology able to cope with all possible scenarios, LPWAN solutions are emerging as viable technologies for implementing private, low-cost cellular like wireless networks. Distributed systems could leverage this approach as a driving technology for services as smart environment sensing, pervasive sensing and soon. In the considered scenario, the capacity of the network is of main importance; even if communication is sporadic for most of the time, an event observed by many nodes results in a huge amount of simultaneous transmissions. Are the IoT technologies usable to this end? In this paper LoRaWAN technology is investigated, with the aim of evaluating the orthogonality of virtual channels permitted by the LoRa physical layer. In particular, measurements demonstrated that overlapping transmissions having the same power at the receiver can be correctly decoded if occurring with different spreading factors, whereas co-spread messages require at least 4ms spacing.
  •  
8.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
9.
  •  
10.
  • Ferrari, P., et al. (författare)
  • Evaluation of communication latency in industrial IoT applications
  • 2017
  • Ingår i: 2017 IEEE International Workshop on Measurement and Networking, M and N 2017 - Proceedings. - 9781509056798
  • Konferensbidrag (refereegranskat)abstract
    • The idea of Industry 4.0 includes the concept of Industrial Internet of Things (IIoT) that is the possibility for industrial devices to have Internet connection and share data. Huge amount of data are stored and analyzed in the Cloud to extract meaningful information to be sold as 'services'. Today, many Industry 4.0 scenarios do not require a short latency between data collection and output reaction, but it is expected that short latency services would be seen by the market as a distinctive quality. This paper deals with the estimation of latency in transferring data from the field (where the production takes place) to the Cloud and then back to field. Since IIoT natively refers to worldwide applications, the paper analyzes some cases where interacting nodes are deployed in different continents. The experimental results show that simple solutions based on widely accepted lightweight protocols (e.g. MQTT) and inexpensive industrial grade IoT devices are feasible. From the performance point of view, when using free access Cloud servers, they can achieve round trip latency down to 300 ms with standard deviation of about 20 ms over one-week observation time. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (10)
konferensbidrag (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
Författare/redaktör
Åkesson, Torsten (2)
Lund-Jensen, Bengt (2)
Strandberg, Jonas (2)
Zwalinski, L. (2)
Ekelöf, Tord (2)
Laue, Jan (1)
visa fler...
Abbott, B. (1)
Abdallah, J (1)
Abdinov, O (1)
Abeloos, B (1)
Bocchetta, Simona (1)
Doglioni, Caterina (1)
Hedberg, Vincent (1)
Jarlskog, Göran (1)
Kalderon, Charles (1)
Lytken, Else (1)
Mjörnmark, Ulf (1)
Smirnova, Oxana (1)
Viazlo, Oleksandr (1)
Sidebo, P. Edvin (1)
Ripellino, Giulia (1)
Pöttgen, Ruth (1)
BRYNGEMARK, LENE (1)
Bokan, Petar (1)
Brenner, Richard (1)
Ellert, Mattias (1)
Ferrari, Arnaud (1)
Gradin, P.O. Joakim (1)
Öhman, Henrik (1)
Rangel-Smith, Camill ... (1)
Sales De Bruin, Pedr ... (1)
Asimakopoulou, Eleni ... (1)
Bergeås Kuutmann, El ... (1)
Ferrari, Arnaud, 197 ... (1)
Åkesson, T.P.A. (1)
Corrigan, E.E. (1)
Doglioni, C. (1)
Hansen, E. (1)
Hedberg, V. (1)
Jarlskog, G. (1)
Konya, B. (1)
Lytken, E. (1)
Mankinen, K.H. (1)
Marcon, C. (1)
Mjörnmark, J.U. (1)
Mullier, G.A. (1)
Poettgen, R. (1)
Skorda, E. (1)
Smirnova, O. (1)
Aleksa, M. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (6)
Mittuniversitetet (5)
Stockholms universitet (4)
Lunds universitet (4)
Uppsala universitet (3)
Chalmers tekniska högskola (3)
visa fler...
Luleå tekniska universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy